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Discordant future climate-driven changes in winter
PM2.5 pollution across India under a warming climate

Xiaorui Zhang1 , Xiang Xiao1, Fan Wang1,Yang Yang2, Hong Liao2, Shixin Wang1, and
Meng Gao1,*

India’s megacities have been suffering from frequent winter particulate matter (PM2.5) pollution episodes,
and how impacts of meteorology on air quality will evolve with time under a warming climate remains
a concern. In this study, we identified conducive meteorological weather conditions in 5 megacities across
India and found that quantile regression models can better describe the meteorological impacts under high
pollution level and capture more observed high PM2.5 events than linear regression.The future climate-driven
changes in winter PM2.5 pollution in India were offered with quantile regression models using Coupled Model
Intercomparison Project 6 simulations under the SSP585 and SSP245 scenarios. Under SSP585 scenario,
northern Indian megacities are likely to suffer from a stagnant weather condition in the near future, and
higher boundary layer height and more atmospheric dispersion conditions during the second half of 21st
century. Compared with the mean levels over 1990–2019, New Delhi and Kolkata would experience 6.1 and
5.7 more PM2.5 exceedances per season over 2030–2059 and 4.1 and 2.5 fewer exceedances per season during
2070–2099, respectively. Owing to increasing surface humidity and boundary layer height, air quality is
projected to improve in Mumbai and Hyderabad with more than 6.1 and 1.2 fewer exceedances per season
over 2050–2099. However, more than 6 exceedances will occur in Chennai due to enhanced lower-tropospheric
stability.The negative impact of future meteorology on PM2.5 exceedances would become weak under SSP245.
Our results can provide references for the Indian government to optimize their emission control plans to
minimize adverse impacts of air quality on health, ecosystem, and climate.

Keywords: Particulate matters, Meteorological condition, Quantile regression, Climate change

1. Introduction
Fine particulate matter (PM2.5) emerges as a serious envi-
ronmental concern in rapidly developing countries, espe-
cially China and India, due to intense energy consumption
(Lelieveld et al., 2001; James, 2011). Approximately 1.1
million premature deaths are attributed to PM2.5 exposure
in India, and China and India together accounted for more
than half of the air pollution induced global deaths (Lelie-
veld et al., 2015; Cohen et al., 2017; Balakrishnan et al.,
2019). With the implementation of China’s Air Pollution
Prevention and Control Action Plan since 2013, a signifi-
cant annual decreasing rate of 7% in the concentrations of
PM2.5 was identified in eastern China (Wang et al., 2020).
However, India’s megacities have been suffering still from

increasingly frequent winter haze extremes (Dey et al.,
2020), posing greater threats to human health (Jia et al.,
2021).

Residential biomass combustion, power generation,
and industrial coal combustion appear to be the dominant
source of PM2.5 in India (Ali et al., 2019; Chowdhury et al.,
2019), while transportation, brick production, and distrib-
uted diesel play moderate roles (Venkataraman et al.,
2018). To mitigate air pollution, the Indian government
initiated a bunch of measures at the national level (e.g.,
National Environment Policy, 2006: http://iced.cag.gov.
in/?page_id¼1037; National Green Tribunal Act, 2015:
http://www.greentribunal.gov.in) and city levels (odd–
even scheme for vehicles in New Delhi). Yet no significant
improvements in air quality have been found after the
implementation of these measures (Sharma et al., 2017;
Chandra et al., 2018; Purohit et al., 2019), which might be
partly caused by frequent stable meteorological condi-
tions (Chowdhury et al., 2017).

Day-to-day variability of PM2.5 is modulated by anthro-
pogenic emissions, local meteorological conditions, and
large-scale circulation patterns (Tai et al., 2010; Gao et
al., 2016; Cai et al., 2017; Gao et al., 2019; Gao et al.,
2020; Sherman et al., 2021). Previous studies emphasized
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the more important roles of meteorological conditions in
the formation of severe pollution episodes (Zhang et al.,
2018; Chen et al., 2020). Stagnant meteorological condi-
tions include shallow boundary layer, weak surface winds,
strong temperature inversion (Schnell et al., 2018; Ojha
et al., 2020), and associated descending air (Li et al., 2021).
Due to limited measurements of concentrations and che-
mical components of PM2.5 over India, chemistry-climate
models were extensively used to explore the impact of
meteorology on air quality (Bran and Srivastava, 2017;
Pommier et al., 2018; Schnell et al., 2018). Given the com-
plex topography, uncertain anthropogenic emission esti-
mates (Pan et al., 2015), and frequent stable conditions
(Schnell et al., 2018; Ojha et al., 2020; Sherman et al.,
2021) in India, it is challenging to simulate the processes
of air pollution episodes accurately (Pommier et al., 2018).

As urbanization is anticipated to accelerate in India,
future Indian urban air quality has been a concern (James,
2011; Bhanarkar et al., 2018; Venkataraman et al., 2018; Li
et al., 2021). Model projections suggested that future
increases in anthropogenic emissions would increase
PM2.5 level in India by 31%–67% in 2050s (Kumar et
al., 2018; Pommier et al., 2018; Wu et al., 2019; Xu et
al., 2020), whereas the impact of future meteorology on
air quality remains controversial. Wu et al. (2019) con-
cluded that stronger horizontal dispersion and vertical
ventilation would improve air quality in northern India
in 2050s. Li et al. (2021) drew similar conclusions using
self-organizing map (SOM) classification, but Horton et al.
(2014) and Pommier et al. (2018) argued that more fre-
quent stagnation in the future would degrade air quality
in India. With complex topography, surface atmospheric
conditions can be decoupled with upper atmospheric cir-
culations over northern India (Schnell et al., 2018). Most
previous studies focused on selected limited meteorolog-
ical variables, which might contribute to divergent views.
Here we aim to present a comprehensive statistical anal-
ysis to explore how the impacts of meteorology on fre-
quency of high PM2.5 events will evolve under a warming
climate using a combination of meteorological variables.
The results would be valuable for both air quality and
health risk management.

2. Methodology
2.1. Observations and meteorological reanalysis

data

Observed hourly PM2.5 concentrations during winter
(December, January, and February) of 2015–2021 at 5
cities in India, namely New Delhi, Kolkata, Mumbai,
Hyderabad, and Chennai (Figure 1a), were obtained from
the U.S. Embassy website. Daily mean PM2.5 concentra-
tions were calculated when data were valid for over 20
h within a day. The dataset have been validated and widely
used in air quality studies over India (Li et al., 2021; Singh
et al., 2021). The daily average standard for PM2.5 set by
India is 60 mg m�3, but in northern India, this threshold is
consistently exceeded (Figure S1). Our study focuses on
the role of meteorological conditions in high pollution
events, thus daily PM2.5 concentrations exceeding the
75th percentile of PM2.5 concentrations are considered

as exceedances. We have set the threshold standards for
New Delhi, Kolkata, Mumbai, Hyderabad, and Chennai at
240, 200, 120, 90, and 60 mg m�3, respectively (Figure
1c). The frequency of PM2.5 exceedances and the number
of days with PM2.5 exceeding 60 mg m�3 are not strongly
correlated in most cities with high PM2.5 concentrations
(Figure S1). Utilizing PM2.5 exceedances provides a more
advantageous approach for investigating the influence of
meteorological conditions on high pollution events.

Historical meteorological variables over 2015–2021
were obtained from the National Centers for Environmen-
tal Prediction (NCEP/NCAR) reanalysis dataset provided at
a horizontal resolution of 2.5�� 2.5�. We included geopo-
tential height, zonal and meridional winds, and tempera-
ture at 850, 500, and 250 hPa (Figure S2), precipitation,
and near surface humidity, temperature, winds, and pres-
sure. We also calculated lower-tropospheric stability (LTS)
in this study as the difference between potential tempera-
tures at the 700 hPa level and the surface to measure the
strength of temperature inversion (Klein and Hartmann,
1993). The height of planetary boundary layer (HPBL) data
were taken from the NCEP FNL, since HPBL data are not
provided by NCEP/NCAR.

Daily aerosol optical depth (AOD) from Moderate Res-
olution Imaging Spectroradiometer on board the Aqua
and Terra satellites during winter of 2015–2021 were used
to display the pollution distributions over India and eval-
uate the constructed regression models. It combined Dark
Target and Deep Blue AOD (MOD08_D3) at 550 nm with
a horizontal resolution of 1.0�� 1.0�.

2.2. CMIP6 projections

The future meteorological impacts on exceedances for the
threshold values of 75th percentile PM2.5 concentration
are projected based on the Coupled Model Intercompari-
son Project Phase 6 (CMIP6) multi-model ensemble simu-
lations, which includes historical simulation from 1979 to
2014, and future simulations from 2015 to 2100 under
the SSP585 and SSP245 scenarios. SSP5 represents an
energy intensive, fossil-based economy while SSP2
assumes a medium pathway of future greenhouse gas
emissions, with an additional radiative forcing of 8.5 and
4.5 W m�2 in 2100 (O’Neill et al., 2016), respectively.
Pressure level variables were taken from Xu et al. (2021),
which provided a bias-corrected global dataset based on
18 CMIP6 models and the fifth generation European Cen-
tre for Medium-Range Weather Forecasts reanalysis
(ERA5). The data cover the historical and future period
of 1979–2100 and are offered at a spatial resolution of
1.25��1.25� and 6-h intervals. We interpolated extracted
variables onto grids of 2.5��2.5� to keep them consistent
with those of the NCAR/NCEP reanalysis. Notably, owing
to increased tropospheric temperature, upward trends in
global geopotential height were found in model projec-
tions (He et al., 2018). Following He et al. (2018) and Wang
et al. (2021), the original geopotential height and air tem-
perature were subtracted by the zonal mean (0�N-50�N,
180�W-180�E) as eddy geopotential height and air tem-
perature to measure their variations under a warming
climate.
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2.3. Meteorological variable selection and

statistical regression

To identify key meteorological variables influencing
Indian winter PM2.5 pollution, correlation and composite
analysis between each variable and daily concentrations of
PM2.5 in India was performed at 5 cities independently
(Figures S3–S12). The local meteorological parameters
have been reported as important factors influencing
PM2.5 concentrations in previous studies (Schnell et al.,
2018; Ojha et al., 2020). Therefore, for surface variables,
stability, and HPBL, we utilized the value of the grid where
the PM2.5 monitoring station is located. Although the cir-
culation characteristics have been less studied, they also
play a significant role (Li et al., 2021). For pressure level
variables, we followed previous studies (Cai et al., 2017; Li
et al., 2021) and used the average value of the region with
relatively strong correlation and composite anomaly. As
a pressure level variable may have several high-
correlation regions, they have been considered as poten-
tial predictors. Thus, there are more than 21 variables as
the initial set of predictive covariates. The inputs for
statistical regression are shown in Table 1. Each variable

was standardized by its respective standard deviation.
Since there was no significant trend observed in the win-
tertime PM2.5 during study period, the data are not
detrended.

We first selected meteorological indicators using mul-
tiple linear regression model (Equation 1) evaluated with
Akaike information criterion following Tai et al. (2010):

PM2:5 ¼ b0þb1x1 þ b2x2 þ . . .þ bnxn þ e i ¼ 1; . . . ; n ð1Þ

where n represents the number of meteorological vari-
ables; e is the error term and b signifies the coefficient
of each term, which is estimated by minimizing the mean
square error. To address the collinearity issue, the variance
inflation factor (VIF) was utilized to identify and remove
variables with high VIF values. Multiple linear regression
is a basic standard method to predict the mean value of
PM2.5. However, frequent haze extremes have drawn
more attention, which is difficult to estimate based on
multiple linear regression. Based on the variables
selected by linear regression, the 75th quantile regres-
sion was further used in this study to identify the rela-
tionship under higher PM2.5 level. It makes no

Figure 1. Winter PM2.5 pollution in India. (a) The averaged aerosol optical depth at 550 nm in winter over 2015–
2021 and location of 5 megacities, (b) monthly variations (mg m�3), (c) mean and 75th percentile PM2.5 (mg m�3)
associated with frequency of haze days (days per season, PM2.5 exceeding 60 mg m�3), and (d) distributions (%) of
winter PM2.5 concentrations in New Delhi, Kolkata, Mumbai, Hyderabad, and Chennai over 2015–2021.
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assumptions about PM2.5 distribution and is more
advanced against outliers. The quantile regression model
can estimate the conditional percentiles of PM2.5 (Koen-
ker and Bassett, 1978), and is of the form:

PM2:5 ¼ b0ðtÞ þ b1ðtÞx1 þ b2ðtÞx2

þ . . .þ bnðtÞxn þ e i ¼ 1; . . . ; n ð2Þ

In Equation 2, t represents the tth quantile, which is
75th quantile in this study. Thus, bi is 75th quantile
regression coefficients of meteorological variables, which
can be obtained by minimizing the loss function:

X

PM2:5�f ðxÞ
0:75jPM2:5 � f ðxÞj

þ
X

PM2:5<f ðxÞ
ð1� 0:75ÞjPM2:5 � f ðxÞj ð3Þ

where f ðxÞ ¼
Pn

i biðtÞxi. Thus, minimizing the absolute
value of difference between observed PM2.5 and estimated
PM2.5 is weighted by 0.75 for underprediction and 0.25
for overprediction, rather than minimizing the mean
square error in linear regression. Quantile regression is
an advanced method, which has been widely used to
investigate the extreme air pollution (Porter et al., 2015;

Otero et al., 2016; Zhang et al., 2022). To further investi-
gate the quantile sensitivities of PM2.5 to selected meteo-
rological variables, the quantile regressions ranging from
10th to 90th percentiles are conducted.

3. Results and discussion
3.1. Wintertime PM2.5 pollution and meteorological

drivers of PM2.5 in 5 Indian megacities

Severe air pollution with AOD reaching up to 1 is observed
commonly over northern India (Figure 1a), which is one
of the most densely populated areas with intense house-
hold emissions (Chowdhury et al., 2019). Monthly concen-
trations of PM2.5 in northern Indian cities (New Delhi and
Kolkata) frequently exceed 200 mg m�3 in winter (Figure
1b), with average values of 193.3 ± 84.8 mg m�3 and
163.8 ± 61.1 mg m�3, respectively (Figure 1c). The serious
haze pollution in New Delhi and Kolkata are associated
with daily mean PM2.5 concentration exceeding 120 mg
m�3 accounted for approximate 80% of winter days dur-
ing 2015–2021 (Figure 1d), posing greater threats to
human health. Mumbai, Hyderabad, and Chennai have
relatively better air quality than northern Indian cities,
with average PM2.5 concentration is 97.5 ± 33.9 mg m�3,

Table 1. Meteorological predictors used in the regression models and statistical models in New Delhi, Kolkata,
Mumbai, Hyderabad, and Chennai

Meteorological Variables

LTS Lower-tropospheric stability 250HGT Geopotential at 250 hPa

t2m 2 m air temperature 500HGT Geopotential at 500 hPa

RH Surface relative humidity 850HGT Geopotential at 850 hPa

SH 2 m specific humidity 250uwnd Zonal wind at 250 hPa

sp Pressure at surface 500uwnd Zonal wind at 500 hPa

u10 10 m U wind component 850uwnd Zonal wind at 850 hPa

v10 10 m V wind component 250vwnd Meridional wind at 250 hPa

wspd 10 m wind speed 500vwnd Meridional wind at 500 hPa

pr_wtr Precipitable water 850vwnd Meridional wind at 850 hPa

HPBL Height of planetary boundary layer Omega Vertical velocity at 850 hPa

850air Air temperature at 850 hPa

Statistical Models

New Delhilm PM2.5 ¼ 182.7 � 30.3 � 850air � 21.5�HPBL � 13.4�RH þ 11.7 � 250HGT � 9.8 � 850uwnd

New Delhirq PM2.5 ¼ 216.3 � 35.3 � 850air � 23.2 � HPBL � 12.9 � RH þ 15.2 � 250HGT � 10.1 � 850uwnd

Kolkatalm PM2.5 ¼ 162.6 � 22.4 � 850air � 17.4 � 850vwnd � 14.9 � RH þ 9.6 � 500HGT � 6.6 � HPBL

Kolkatarq PM2.5 ¼ 186.8 � 27.3 � 850air � 15.8 � 850vwnd � 15.5 � RH þ 11.2 � 500HGT � 8.7 � HPBL

Mumbailm PM2.5 ¼ 97.6 � 15.7 � HPBL � 9.1 � 250uwnd þ 6.4 � 850air � 4.6 � RH � 4.1 � 850uwnd

Mumbairq PM2.5 ¼ 113.5 � 17.5 � HPBL � 12.6 � 250uwnd þ 9.0 � 850air � 7.6�RH � 3.3 � 850uwnd

Hyderabadlm PM2.5 ¼ 75.2 � 8.7 � 850vwnd � 6.5 � RH þ 3.9 � 500HGT � 3.6 � HPBL þ 2.8 � LTS

Hyderabadrq PM2.5 ¼ 86.1 � 9.7 � 850vwnd � 6.3 � RH þ 5.5 � 500HGT � 3.0 � HPBL þ 2.4 � LTS

Chennailm PM2.5 ¼ 47.6 þ 5.4 � 500HGT þ 4.9 � LTS � 4.8 � 850vwnd � 4.1 � RH � 3.9 � 850HGT

Chennairq PM2.5 ¼ 57.5 þ 6.0 � 500HGT þ 5.2 � LTS � 6.8 � 850vwnd � 2.3 � RH � 5.2 � 850HGT

“lm” and “rq” represent multiple linear regression and quantile regression, respectively.
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76.7 ± 33.4 mg m�3, and 47.2 ± 21.6 mg m�3, respectively
(Figure 1c). Frequent winter haze episodes occur still in
Mumbai, Hyderabad, and Chennai, as suggested by 79.6,
66.4, and 22.6 days per season with PM2.5 concentrations
exceeding the Indian National Ambient Air Quality Stan-
dards (NAAQS), 60 mg m�3 (Figure 1c). In addition, no
significant trend in wintertime PM2.5 from 2015 to 2021
can be found in these 5 megacities (Figure 1b), in con-
trast to the decreasing trend of annual PM2.5 identified by
Singh et al. (2021).Weather conditions conducive to PM2.5

pollution in India mainly include lower HPBL, stronger
temperature inversions (LTS), and lower surface relative
humidity (Figures 2–6), consistent with Schnell et al.
(2018) and Ojha et al. (2020).

Identified favorable near surface variables are gener-
ally consistent, while associated circulation patterns for
these 5 cities greatly differ. Daily PM2.5 concentrations in
New Delhi show strong positive correlation with geopo-
tential height at 250 hPa on the west of India (Figure S8).
Western disturbances are synoptic-scale systems embed-
ded in the subtropical westerly jet stream, influencing
winter precipitation in northern India (Dimri et al.,
2016). The positive geopotential anomaly of 35 m at
250 hPa over the west of India tends to cause a branch
of westerly anomaly over Pakistan and easterly anomaly
over the Arabian Sea (Figure 2a), reflecting less occur-
rence of western disturbance and rainfall (Hunt et al.,
2018). Owing to local sources accounting for more than
70% of PM2.5 in New Delhi (Guo et al., 2019), stagnant
conditions would assist to accumulate air pollutants, as
suggested by the weakened northwesterly winds over
northern India (Figure 2b). For another northern

polluted city, Kolkata, although the correlation between
500 hPa geopotential height and PM2.5 is relatively low
(Figure S9), the positive geopotential anomaly leads to
southerly anomaly over northern India (Figure 3a). As
air masses move northward over the mountain barrier, its
depth contracts and relative vorticity decreases according
to the Rossby potential vorticity conservation law. There-
fore, divergence downdraft induced by development of
anticyclonic relative vorticity occurs on windward slope
(Figure S9). The northerly anomalies of 1.0 m s�1 at 850
hPa are found over eastern India (Figure 3b), resulting in
the enhanced transport of air pollutants from Indo
Gangetic plains, and weakening water vapor transport
from the Bay of Bengal to Kolkata (Figure 3d).

Mumbai, located on the west coast of India, is largely
influenced by zonal winds at 250 and 850 hPa (Figure
S10). Zonal wind at 250 hPa on the west of India are
closely connected with western disturbance (Hunt et
al., 2018). The easterly anomalies of 6 m s�1 weaken
western disturbance (Figure 4a), and further reduce pre-
cipitation and humidity (Figure 4d), which is similar to
that in New Delhi (Figure 2a). Circulation over Mumbai
in winter is characterized by easterly wind associated
with high pressure at 850 hPa over the central India
(Figure S2c), which is the dominant pattern for PM2.5

pollution in Mumbai (Singh et al., 2021). Therefore, the
anticyclone anomaly at 850 hPa associated with easterly
anomaly is beneficial to the transport of air pollutant
from northern and central India to Mumbai (Figure
4b) and reduces transport of water vapor from the Ara-
bian Sea also (Figure 4d). The enhanced 850 hPa high
pressure also induces southerly warm advections over

Figure 2. Selected meteorological drivers of PM2.5 in New Delhi. Composites of days with observed PM2.5 larger
than 75th percentile PM2.5 concentration for (a) geopotential height (m, contour) over 25.0�N–32.5�N and
47.5�E–72.5�E and wind fields (m s�1, vector) at 250 hPa, (b) zonal wind (m s�1, contour) at over 27.5�N–22.5�N
and 77.5�E–92.5�E and wind fields (m s�1, vector) at 850 hPa, (c) air temperature (K) at 850 hPa over 20.0�N–25.0�N
and 95.0�E–100.0�E, (d) surface relative humidity (%), and (e) height of planetary boundary layer (m). Green boxes
denote regions for averages.
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Mumbai (Figure 4c), which could strengthen thermal
inversion layers and suppress the development of HPBL
(Figure 4e).

Hyderabad and Chennai are located in southern India
and are largely influenced by air masses originating from
the Bay of Bengal and partly from northern India (Singh et

Figure 3. Selected meteorological drivers of PM2.5 in Kolkata. Composites of days with observed PM2.5 larger than
75th percentile PM2.5 concentration for (a) geopotential height (m, contour) over 20.0�N–27.5�N and 92.5�E–112.5�E
and wind fields (m s�1, vector) at 500 hPa, (b) meridional wind (m s�1, contour) over 20.0�N–25.0�N and 85.0�E–
90.0�E and wind fields (m s�1, vector) at 850 hPa, (c) air temperature (K) at 850 hPa over 20.0�N–25.0�N and 95.0�E–
100.0�E, (d) surface relative humidity (%), and (e) height of planetary boundary layer (m). Green boxes denote regions
for averages.

Figure 4. Selected meteorological drivers of PM2.5 in Mumbai. Composites of days with observed PM2.5 larger than
75th percentile PM2.5 concentration for (a) zonal wind (m s�1, contour) over 25.0�N–27.5�N and 40.0�E–62.5�E and
wind fields (m s�1, vector) at 250 hPa, (b) meridional wind (m s�1, contour) over 15.0�N–17.5�N and 70.0�E–77.5�E
and wind fields (m s�1, vector) at 850 hPa, (c) air temperature (K) at 850 hPa over 17.5�N–25.0�N and 67.5�E–75.0�E,
(d) surface relative humidity (%), and (e) height of planetary boundary layer (m). Green boxes denote regions for
averages.
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al., 2021). PM2.5 in these 2 cities are both closely associ-
ated with 500 hPa geopotential height over Arabian Pen-
insula and 850 hPa geopotential height over the Bay of

Bengal (Figures S11 and S12). The positive geopotential
anomaly of 15 m at 500 hPa over Arabian Peninsula
reveals a northward shift of North African subtropical high

Figure 5. Selected meteorological drivers of PM2.5 in Hyderabad. Composites of days with observed PM2.5 larger
than 75th percentile PM2.5 concentration for (a) geopotential height (m, contour) over 22.5�N–30.0�N and 30.0�E–
47.5�E and wind fields (m s�1, vector) at 500 hPa, (b) meridional wind (m s�1, contour) over 12.5�N–20.0�N and
75.0�E–82.5�E and wind fields (m s�1, vector) at 850 hPa, (c) lower-tropospheric stability (K), (d) surface relative
humidity (%), and (e) height of planetary boundary layer (m). Green boxes denote regions for averages.

Figure 6. Selected meteorological drivers of PM2.5 in Chennai. Composites of days with observed PM2.5 larger than
75th percentile PM2.5 concentration for (a) geopotential height (m, contour) over 22.5�N–30.0�N and 30.0�E–47.5�E
and wind fields (m s�1, vector) at 500 hPa, (b) geopotential height (m, contour) over 12.5�N–22.5�N and 87.5�E–
95.0�E and wind fields (m s�1, vector) at 850 hPa, (c) meridional wind (m s�1, contour) over 10.0�N–20.0�N and
77.5�E–85.0�E and wind fields (m s�1, vector) at 850 hPa, (d) surface relative humidity (%), and (e) lower-tropospheric
stability (K). Green boxes denote regions for averages.
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(Figures 5a and 6a), extending eastward to India and
leading to more dominance of the subtropical high. It
induces strengthened LTS and downdrafts over Hyderabad
and Chennai (Figures 5c and 6e), leading to worse pol-
lution. Moreover, the negative geopotential anomaly at
850 hPa over the Bay of Bengal results in strong northerly
anomaly (Figures 5b and 6b), which strengthens trans-
port of air masses from polluted northern India.

It is worthwhile mentioning that the pollution-
favorable circulation patterns in 5 cities influencing trans-
port of pollutants and water vapor are mainly associated
with southeasterly anomaly at 850 hPa on the east of
India (Figures 2–6). It would bring water vapor to the
Myanmar with substantially positive surface relative
humidity in 5 cities and further reduce air temperature
(Figures 2c and 3c). On the basis of these similar signals
on the east of India, it might have great potential as index
to represent pollution level across India, which will be
investigated in future work. In this study, the value of
surface relative humidity located in each monitoring sta-
tion is used, which directly affects local PM2.5 concentra-
tion. In addition, the anomalous of HPBL are generally
most obvious in central India (Figures 2–5), rather than
in each city, since HPBL play an important role on trans-
boundary pollutants (Huang et al., 2020). Given that the
relationship between HPBL and transport of pollutants in
India is not understood clearly, we only used local HPBL in
this study.

3.2. Evaluation of statistical models

Meteorological impacts exhibit spatial heterogeneity
(Table S1). For example, PM2.5 concentrations are highly
sensitive to LTS in the southeastern India (Hyderabad and
Chennai), whereas HPBL has a greater impact in the west-
ern India (New Delhi and Mumbai). It suggests that the
responses of PM2.5 variation to global warming would be
discordant in different cities and the future meteorologi-
cal impacts should be evaluated in a combination of vari-
ables. Based on above mentioned correlation and physical
relationships between meteorological conditions and win-
ter PM2.5 concentration, we quantitatively describe PM2.5

in each city independently using both multiple linear
regression and quantile regression models as shown in
Table 1. Generally, the variation of observed wintertime
PM2.5 concentration is well captured by our built statisti-
cal models. A 10-fold cross-validation was conducted and
the correlation coefficients between observation and
cross-validated hindcast PM2.5 are higher than 0.53 (P <
0.05) (Figure S13). Although multiple linear regression
models exhibit higher correlation coefficients and lower
mean bias than quantile regression models (Figure S13),
the relationships between PM2.5 and meteorological vari-
ables identified by linear regressions cannot apply across
the distributions of pollutant concentration (Figures S14–
S18). For instance, larger negative change in the coeffi-
cients of 850 hPa air temperature indicates that it plays
a more important role in variations of PM2.5 under PM2.5

pollution levels in New Delhi (Figure 7a). Its coefficient
obtained from multivariate quantile regression at 75th
percentile is �35.3, which is significantly smaller than

that from linear regression. Whereas, the impacts of mete-
orological variables, such as 850 hPa zonal wind, are rel-
atively unchanging across quantiles (Figure 7a).
Generally, the impacts of surface variables, like relative
humidity and HPBL, are more consistent impacts across
PM2.5 quantiles, except in Mumbai (Figure 7). The mete-
orological variables on pressure level, such as geopoten-
tial height at 500 and 850 hPa, have increasing impact
on high-percentile PM2.5. It suggests that the large circu-
lation patterns exert greater impacts on severe air pollu-
tion than mean pollutant level. Therefore, the
meteorological impacts on pollution extremes would
be poorly estimated based on linear regression. Mean
biases of multiple linear regression models for 5 cities
increase substantially along with PM2.5, whereas those of
quantile regression models are relatively lower (Figure
S13). Figure 8 illustrates that the linear regression mod-
els are unable to capture more than half of high PM2.5

events with underestimation of 63.9, 53.4, 36.1, 19.3,
and 19.1 mg m�3 in New Delhi, Kolkata, Mumbai, Hyder-
abad, and Chennai, respectively. The meteorological
impacts during severe pollution episodes are better
represented by quantile regression models (Figures
S14–S18). The quantile regression models are more effec-
tive in representing the meteorological impacts during
severe pollution episodes. The elevated AOD is also
observed during these episodes identified by quantile
regression models (Figure S19). In general, the quantile
regression models are able to capture most of high PM2.5

events in 5 Indian megacities (Figure 8).

3.3. Future projection

The exceedances for the threshold values of 75th percen-
tile PM2.5 concentration are projected using our built
quantile regression models based on CMIP6 data under
the SSP585 and SSP245 scenarios. Comparing the fre-
quency of exceedances obtained from utilizing meteoro-
logical variables based on reanalysis data and CMIP6
data, it shows that the regression models under SSP585
scenario have better performance than those under
SSP245 (Figure S20). Therefore, we mainly focus on
future climate-driven change in PM2.5 exceedances under
SSP585 scenario (Figure 9), and the results under
SSP245 scenario are shown in Figure S21. The impacts
of climate change on Indian wintertime PM2.5 pollution
are evaluated by comparing the frequencies of PM2.5

exceedance between the period of 1990–2019 and
future periods under SSP585 scenario (Figure 9). Under
climate change, New Delhi will suffer more frequent
PM2.5-favorable conditions in the first half of 21st cen-
tury, experiencing 6.1 days per season more PM2.5 excee-
dances in 2020–2059 (Figure 9a). The weakening 850
hPa westerly wind with a weaker atmospheric dispersion
is responsible for the worsening air quality during the
first half of 21st century (Figure S22). Owing to the inter-
actions among sustained growth in HPBL and enhanced
850 hPa westerly winds, climate change would result in
a decreasing trend in projected PM2.5 exceedances during
the second half of 21st century. Air quality in New Delhi
is anticipated to improve by 4.1 days per season fewer
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PM2.5 exceedances in 2070–2099 compared with 1990–
2019. The HPBL and air temperature at 850 hPa, with
a downward trend during 1980–2040 and upward trend
after 2040, mainly modulate the variation of PM2.5 in
Kolkata (Figure S23). Thus, Kolkata will experience 5.7
days per season more PM2.5 exceedances in 2030–2059
and 2.5 days per season fewer exceedances in 2070–
2099 (Figure 9b). It is worth noting that the negative
impact of meteorological conditions on the air quality in
cities of northern India during the first half of the 21st
century may be weakened and possibly even reversed
under median emission conditions (SSP245) (Figure S21).

Declining trends in frequencies of exceedances for the
threshold values of 75th percentile PM2.5 concentration
are found in both Mumbai and Hyderabad after 2010
(Figure 9c and d). Although the increased eddy 850 hPa
air over Mumbai, at a rising rate of 0.007 K year�1 (Figure

S24e), would suppress the development of HPBL (Figure
S24d), projected increasing surface humidity of 0.04%
year�1 would lead to more than 6 days per season fewer
PM2.5 exceedances after 2030 in Mumbai (Figure 9c). The
decreasing projected frequencies of exceedances in Hyder-
abad is caused by the increasing surface humidity and
HPBL (Figure S25). Although the selected key meteorolog-
ical variables are similar for winter PM2.5 in Hyderabad
and Chennai, opposite future trends in PM2.5 exceedances
are found. LTS is expected to increase substantially in
Chennai with 0.02 K year�1, which can offset the wet
scavenging effects induced by increasing humidity (Figure
S26). Chennai is found to have more than 6 days per
season to exceed the Indian NAAQS during 2020–2099
compared to 1990–2019 (Figure 9e). Such discordant
PM2.5 exceedances trends for Hyderabad and Chennai
indicate that the role of meteorological conditions on

Figure 7. Difference in sensitivities of PM2.5 to meteorological variables. Sensitivity changes across quantiles in (a)
New Delhi, (b) Kolkata, (c) Mumbai, (d) Hyderabad, and (e) Chennai. The magnitudes of bars are mean coefficients
ranging from 10th to 90th percentile quantile regressions, and the gray and green dots denote coefficients from linear
regression and 75th percentile quantile regression. Bar colors represent sensitivity change across quantiles.
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future air pollution may be incompletely estimated if lim-
ited factors are considered.

Compared with historical climate, southerly anomalies
at 850 hPa can be found over India during the second half
of the 21st century, which is associated with the negative
geopotential anomalies over Arabian Peninsula (Figure
S27c). This pattern is conducive to alleviate transport of
pollutants from northern India and improve air quality in
central and southern India. The differences between the
future and the historical climate in circulation patterns
show slightly enhanced easterly wind over Pakistan
induced by positive 250 hPa geopotential anomaly on the
north of India (Figure S27a), which is consistent with Li et
al. (2021) that the frequency of western disturbance has
been increasing since 2020. Li et al. (2021) performed
SOM classification on 250 hPa zonal wind fields and inves-
tigated the future changes in different types, while we
focus here on changes in a combination of variables.

4. Discussion
As unfavorable meteorological conditions could offset air
pollution control efforts (Chowdhury et al., 2017; Sharma
et al., 2017; Chandra et al., 2018), how meteorological
conditions evolve with time remains a concern. In this
study, the relationships between meteorological condi-
tions and winter PM2.5 were explored and future changes
in frequencies of high PM2.5 events in 5 Indian megacities
were offered with quantile regression models under the
SSP585 scenario.

Megacities in India have been suffering from severe
winter haze pollution with no significant annual trend.
In northern India, PM2.5 concentrations in 80% of winter
days could exceed 120 mg m�3. For megacities in central
and southern India, the exceedances of the NAAQS also
accounted for a large proportion of winter days. The con-
ducive meteorological weather conditions mainly
include lower HPBL, stronger LTS, smaller relative
humidity, less frequency of western disturbance, and
enhanced transport of air pollutant. We find the meteo-
rological impacts on variations of PM2.5 under high levels
are better estimated by quantile regression than linear
regression models in 5 Indian megacities, and quantile
regression models are able to capture most of severe
pollution episodes. We thus projected future changes in
Indian PM2.5 pollution under the future SSP585 scenario
with quantile regression models.

As one of the most densely populated and polluted
regions in the world, northern Indian megacities (New
Delhi and Kolkata) are expected to suffer more PM2.5

exceedances due to a weaker atmospheric dispersion by
midcentury under the SSP585 scenario. Chowdhury et al.
(2019) emphasized that mitigating household emissions is
effective to control air pollution and meet the NAAQS.
Although northern Indian megacities are likely to suffer
from more frequent stagnant weather condition in the
near future, stringent emission control measures might
suppress these unfavorable influences of climate, as what
have happened in China (Gao et al., 2020). Under

Figure 8. Evaluation of statistical models. Daily PM2.5 (mg m�3) from observation and reconstructed results using
multiple linear regression and quantile regression in New Delhi, Kolkata, Mumbai, Hyderabad, and Chennai (blue
lines are 75th percentile PM2.5 concentration).
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a warming climate, frequencies of PM2.5 exceedances in
Mumbai and Hyderabad are projected to keep a downward
tendency, supported by increasing surface humidity. Mum-
bai and Hyderabad would experience at least 8 fewer
PM2.5 exceedances per season during 2050–2099. On the

contrary, it is projected that more than 7 days exceeding
the Indian NAAQS will occur in Chennai during the sec-
ond half of the 21st century due to enhanced LTS.

Our results are only based on the high emission sce-
nario (SSP585) because the relationships between

Figure 9. Future changes with respect to 1990–2019. Future changes in the frequencies (days per season) of PM2.5

exceedances (daily PM2.5 >observed 75th percentile PM2.5 concentration) compared with period of 1990–2019 in (a)
New Delhi, (b) Kolkata, (c) Mumbai, (d) Hyderabad, and (e) Chennai.
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meteorological variables and PM2.5 concentration are esti-
mated based on observation data. The relations may not
be consistent under low emission scenarios (Wang et al.,
2021). It should be pointed out that the SSP585 repre-
sents an energy intensive and fossil fuel development sce-
nario (O’Neill et al., 2016), remaining large SO2 and NOx

emissions in India until 2040 (Li et al., 2021). We found
that the negative impact of future meteorology on air
quality would become weak under median emission sce-
nario (SSP245). Therefore, transition to clean fuels and
emissions reduction is an urgent need for not only global
warming but also air pollution (Bhanarkar et al., 2018;
Venkataraman et al., 2018; Apte and Pant, 2019). We
believe that, as India has made commitments to reduce
greenhouse gas emissions under the Paris Agreement and
has taken various measures, it can not only directly reduce
PM2.5 concentrations but also mitigate the adverse effects
of pollution-favorable meteorology on air quality.

We find discordant future trends in winter PM2.5 pol-
lution in response to climate change across India, and the
trends are also fluctuating with time by the end of this
century. Our results can provide references for the Indian
government to optimize their emission control plans to
minimize adverse impacts of air quality on health, ecosys-
tem, and climate.

Data accessibility statement
The observed PM2.5 data we use is available from https://
in.usembassy.gov/embassy-consulates/new-delhi/air-
quality-data/. Meteorological data available from https://
psl.noaa.gov/thredds/catalog/Datasets/ncep.reanalysis/
catalog.html and https://rda.ucar.edu/datasets/ds083.2/.
CMIP6 data available from https://esgf-node.llnl.gov/
search/cmip6/ and https://doi.org/10.11922/sciencedb.
00487.

Supplemental files
The supplemental files for this article can be found as
follows:

Figure S1. Annual frequency of exceedances (days per
season) for the threshold values of the 75th percentile
PM2.5 (red), days with PM2.5 concentration between 60 mg
m�3 and 75th percentile (orange), days with PM2.5 concen-
tration lower than 60 mg m�3 (green) and missing data
(gray) in (a) New Delhi, (b) Kolkata, (c) Mumbai, (d) Hyder-
abad and (e) Chennai during 2016-2021. Correlation coeffi-
cients between exceedances for the threshold values of the
75th percentile PM2.5 and days with PM2.5 concentration
larger than 60 mg m�3 are shown in brackets (* indicates
that the correlation coefficient is significant).

Figure S2. Wind vectors (m s�1) and geopotential
height (m) at (a) 250, (b) 500 and (c) 850 hPa averaged
over winter of 2015-2021. The green circles are locations
of five US embassy locations with PM2.5 observations.

Figure S3. Distributions of correlation coefficients
between the winter daily PM2.5 concentration in Delhi
(Green circle) and daily meteorology fields, including sta-
bility, surface temperature, surface pressure, precipitation,
surface relative humidity, surface specific humidity, sur-
face wind speed, 10m zonal and meridional wind speed.

The black dots denote those areas exceeding the 95%
significance level based on the t-test.

Figure S4. Same as Figure S3 but for Kolkata.
Figure S5. Same as Figure S3 but for Mumbai.
Figure S6. Same as Figure S3 but for Hyderabad.
Figure S7. Same as Figure S3 but for Chennai.
Figure S8. Distributions of correlation coefficients

between the winter daily PM2.5 concentrations in Delhi
(Green circle) and daily meteorology fields, including geo-
potential height, zonal and meridional wind speed at 250,
500 and 850 hPa, height of planetary boundary layer
(HPBL), air temperature and vertical velocity (omega) at
850 hPa. The black dots denote those areas exceeding the
95% significance level based on the t-test.

Figure S9. Same as Figure S8 but for Kolkata.
Figure S10. Same as Figure S8 but for Mumbai.
Figure S11. Same as Figure S8 but for Hyderabad.
Figure S12. Same as Figure S8 but for Chennai.
Figure S13. Time series of observed and reconstructed

winter PM2.5 (mg m�3, observation is in gray; results
obtained using multiple linear regression and quantile
regression are in blue and red, respectively; the PM2.5 by
the 10-fold cross-validation method is denoted in green)
in (a) New Delhi, (b) Kolkata, (c) Mumbai, (d) Hyderabad
and (e) Chennai. Correlation coefficients are shown in
legends. (f-j) Blue and red lines are mean bias (mg m�3) of
the multiple linear regression and quantile regression mod-
els along with PM2.5 concentration. Gray dashed lines are
probability density (%) of observed PM2.5 concentrations.

Figure S14. PM2.5 (mg m�3) and selected standardized
meteorological variables in New Delhi. The red lines are
linear regression line, and blue lines are obtained from
quantile regressions ranging from 10th to 90th percentiles.

Figure S15. Same as Figure S14 but for Kolkata.
Figure S16. Same as Figure S14 but for Mumbai.
Figure S17. Same as Figure S14 but for Hyderabad.
Figure S18. Same as Figure S14 but for Chennai.
Figure S19. Aerosol Optical Depth (AOD) at 550 nm

during winter 2015-2021 (dots) and high PM2.5 events
identified by quantile regression models (box plots).

Figure S20. The differences between frequencies of
PM2.5 exceedances (days month�1) in (a) New Delhi, (b)
Kolkata, (c) Mumbai, (d) Hyderabad and (e) Chennai using
our built quantile regression models based on reanalysis
data and CMIP6 data under the SSP585 and SSP245
scenarios.

Figure S21. Future changes in the frequencies (days
per season) of PM2.5 exceedances (daily PM2.5>observed
75th percentile PM2.5 concentration) compared with
period of 1990–2019 in (a) New Delhi, (b) Kolkata, (c)
Mumbai, (d) Hyderabad and (e) Chennai under SSP245
scenario.

Figure S22. Annual variations of the (a) 850 hPa zonal
wind (m s�1), (b) 250 hPa eddy geopotential height (m), (c)
850 hPa eddy air temperature (K), (d) relative humidity (%)
and (e) height of planetary boundary layer (m) from 1979
to 2100 under SSP585 (brown lines) and SSP245 (green
lines) scenarios in New Delhi. The red and blue lines indi-
cate the upward and downward trends under SSP585 sce-
nario by simple linear regression.
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Figure S23. Annual variations of the (a) 500 hPa eddy
geopotential height (m), (b) 850 hPa eddy air temperature
(K), (c) 850 hPa meridional wind (m s-1), (d) relative
humidity (%) and (e) height of planetary boundary layer
(m) from 1979 to 2100 under SSP585 (brown lines) and
SSP245 (green lines) scenarios in Kolkata. The red and blue
lines indicate the upward and downward trends under
SSP585 scenario by simple linear regression.

Figure S24. Annual variations of the (a) 850 hPa zonal
wind (m s�1), (b) 250 hPa zonal wind (m s�1), (c) relative
humidity (%), (d) height of planetary boundary layer (m)
and (e) 850 hPa eddy air temperature (K) from 1979 to
2100 under SSP585 (brown lines) and SSP245 (green
lines) scenarios in Mumbai. The red and blue lines indicate
the upward and downward trends under SSP585 scenario
by simple linear regression.

Figure S25. Annual variations of the (a) lower-tropo-
spheric stability (K), (b) relative humidity (%), (c) 850 hPa
meridional wind (m s�1), (d) 500 hPa eddy geopotential
height (m) and (e) height of planetary boundary layer (m)
from 1979 to 2100 under SSP585 (brown lines) and
SSP245 (green lines) scenarios in Hyderabad. The red and
blue lines indicate the upward and downward trends
under SSP585 scenario by simple linear regression.

Figure S26. Annual variations of the (a) 850 hPa
meridional wind (m s�1), (b) 850 hPa eddy geopotential
height (m), (c) 500 hPa eddy geopotential height (m), (d)
lower-tropospheric stability (K) and (e) relative humidity
(%) from 1979 to 2100 under SSP585 (brown lines) and
SSP245 (green lines) scenarios in Chennai. The red and
blue lines indicate the upward and downward trends
under SSP585 scenario by simple linear regression.

Figure S27. Changes in wind vectors (m s�1) and eddy
geopotential height (m) at (a) 250, (b) 500 and (c) 850 hPa
between future period of 2050-2099 and historical period
of 1978-2014.

Table S1. The regression coefficients in quantile regres-
sion models using a uniform set of meteorological predic-
tors (PM2.5 concentrations and meteorological variables
are standardized).
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