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ABSTRACT: Aerosols play a very important role in climate change with large uncertainties. Using the multimodel results
from CMIP6, we analyzed the aerosol effective radiative forcing (ERF) and aerosol-induced surface air temperature
(SAT) change in China in the present day (PD; 11-yr mean of 2004–14) relative to the preindustrial (PI) time (11-yr mean
of 1850–60). With the increase in the anthropogenic emissions, the simulated surface PM2.5 concentration and aerosol
optical depth (AOD) averaged over eastern China (EC; 188–448N, 1038–1228E) increased by 21.43 6 7.58 mg m23 and
0.47 6 0.33, respectively, from PI to PD. The simulated aerosol ERFs in EC were 24.91 6 2.56 and 25.35 6 2.40 W m22

from equilibrium and transient simulations, respectively. The simulated change in SAT caused by the increases in aerosols
was21.378 6 0.388C in EC from PI to PD. The simulated values of equilibrium and transient climate sensitivity to aerosols
(CSA; aerosol-induced SAT change per unit aerosol ERF) in EC were 0.2368 and 0.2228C (W m22)21, respectively. By us-
ing the observed AOD from MODIS to constrain aerosol ERF, the constrained aerosol equilibrium and transient ERFs
over EC were 24.66 and 24.93 W m22, respectively, which were smaller in magnitude than the simulated values directly
from the models. By using the observed SAT from the Climatic Research Unit temperature version 5 to constrain aerosol-
induced cooling, the surface cooling caused by aerosols was magnified to 21.478C. The adjusted CSA after the constraint
was calculated by dividing adjusted aerosol-induced SAT change by adjusted aerosol ERF. Adjusted equilibrium and tran-
sient CSA values in EC were 0.328 and 0.348C (Wm22)21, respectively.
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1. Introduction

Atmospheric aerosols exert significant influences on atmo-
spheric visibility, human health, ecosystems, and climate change.
Aerosols affect Earth’s radiative balance directly by scattering
and absorbing solar radiation and indirectly by modifying cloud
properties, resulting in an overall negative radiative forcing
(Boucher et al. 2013). During the period from 1750 to 2019, the
cooling effect attributed to the increases in aerosol concentra-
tions offset approximately 31.6% of the positive radiative forcing
induced by the increases in well-mixed greenhouse gases (GHGs)
(Myhre et al. 2013a).

Radiative forcing serves as a valuable metric for assessing
the contribution of specific atmospheric components to cli-
mate change. Previous studies (Chang and Liao 2009; Chang
et al. 2009, 2015; Dang and Liao 2019; Li et al. 2013, 2014; Li
et al. 2016; Qian et al. 2003) examined the direct radiative
forcing (DRF; the scattering and absorption of radiation) by
aerosols in China and reported that DRF values at the top of
the atmosphere (TOA) or the tropopause over China largely
exceeded the global mean. Since the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, effective

radiative forcing (ERF) has gained prominence for quantify-
ing climate drivers, encompassing DRF, semidirect climate
effect, and indirect climate effect of aerosols. ERF is defined
as the change in net downward radiative flux at the TOA,
accounting for adjustments in atmospheric temperature, water
vapor, cloud, and land albedo while keeping the ocean/sea ice
conditions constant (Myhre et al. 2013a). Several studies
reported that the global mean anthropogenic aerosol ERF
(AERF) values were in the range of 22.49 to 21.09 W m22

by using a single model (Grandey et al. 2018; Michou et al.
2020; O’Connor et al. 2021; Oshima et al. 2020; Wang et al.
2020; Zhang et al. 2016. See details in Table S1 in the online
supplemental material).

Estimates of ERF have large uncertainties depending on
models’ representation of aerosols and their radiative proper-
ties. To reduce the uncertainties associated with a single model,
the multimodel results were provided by phase 6 of the
Coupled Model Intercomparison Project (CMIP6) (Eyring
et al. 2016). One of the CMIP6-Endorsed Model Intercompari-
son Projects, the Radiative Forcing Model Intercomparison
Project (RFMIP) (Pincus et al. 2016), diagnosed model ERF
by specifying sea surface temperatures and sea ice conditions.
Zanis et al. (2020) used RFMIP time-slice simulations from
10 Earth system models or general circulation models and ob-
tained a global annual mean aerosol ERF of 21.00 W m22 in
the present day (2014) relative to the preindustrial period
(1850), with the largest negative ERF value over East Asia
(about 25 W m22). Smith et al. (2021) presented ERF ob-
tained from transient simulations of 11 CMIP6 models and
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showed that the negative global mean aerosol ERF reached a
peak of21.50 Wm22 around 1980.

Climate models exhibit uncertainties in simulating climate
change. The uncertainty of unobservable climate variables
can be constrained by the contemporary measurements of the
observable parameters using the statistical relationship be-
tween them (Cherian et al. 2014; Klein and Hall 2015;
Watson-Parris et al. 2020). Based on the relationship between
the present-day total aerosol optical depth (AOD) and the
historical change in anthropogenic AOD across three differ-
ent model ensembles, Watson-Parris et al. (2020) used satel-
lite-based observations of present-day total AOD to constrain
the historical changes in anthropogenic AOD and further re-
ported a constrained global clear-sky DRF of 20.69 W m22.
Smith et al. (2021) constrained the global historical aerosol
ERF by assigning weights to a vast array of model ensemble
members based on their ability to reproduce observed near-
surface warming and ocean heat uptake and found that the
best estimation of aerosol ERF was 21.1 W m22 for 2005–14
relative to 1750.

Previous studies have estimated the contributions of human
activities to historical climate change by conducting single-factor
forcing simulations within the Detection and Attribution Model
Intercomparison Project (DAMIP) (Gillett et al. 2016) in
CMIP6 (Nie et al. 2019; Samset 2022; Smith and Forster 2021).
On this basis, combined with the regression-based optimal fin-
gerprinting approach, detection and attribution (D&A) analysis
has been used to quantify the contributions of individual forcings
to the observed climate change (Allen and Tett 1999; Barnett
et al. 2005; Li et al. 2021; Seong et al. 2021; Xu et al. 2015; Yu
et al. 2022; Zhang et al. 2013). For example, Li et al. (2021), by
using the D&A analysis, estimated that anthropogenic GHGs
and aerosols contributed 1.88 and 20.78C, respectively, to the
observed terrestrial warming of about 1.58C between 1850–1900
and 2011–20. Seong et al. (2021) reported an observed increase
in global and annual mean maximum daily temperature of
0.96 K during 1951–2015, in which 1.76 K was attributed to the
increases in GHGs and 20.88 K was attributed to the increases
in aerosols.

Existing studies on aerosol ERF and its climate effect in
China primarily relied on single models or single chemical
components (Archer-Nicholls et al. 2019; Chen et al. 2020;
Gao et al. 2022; Hu and Sun 2022; Liu et al. 2023; Liu et al.
2022; Seo et al. 2020; Tang et al. 2020; Wang et al. 2022). By
using the WRF-Chem model, Archer-Nicholls et al. (2019) esti-
mated a TOA ERF of 1.22 W m22 from residential sector aero-
sols (mainly black carbon) over eastern China in January 2014.
By using the atmosphere model of the Community Earth System
Model, version 2 (CESM2), Liu et al. (2023) reported that the
Air Pollution Prevention and Control Action Plan in China over
2013–17 led to a positive aerosol ERF of 1.59 W m22 and conse-
quently a 0.098C warming in summer over central-eastern China
(258–408N, 1058–122.58E). By carrying out simulations using the
U.K.’s Earth System Model, version 1 (UKESM1), Seo et al.
(2020) showed aerosol ERF of 23.87 W m22 over eastern–
central China (198–418N, 1018–1308E) in 1980–2010 relative to
1850. Combining observed shortwave absorption and model
simulation, Liu et al. (2022) identified an emergent constraint

on aerosol absorption optical depth of anthropogenic black
carbon and provided an observationally constrained TOA
black carbon ERF of 2.4–3.0 W m22 from aerosol–radiation
interaction over China in 2014 relative to 1850.

As reviewed above, the climate effect of aerosols is of ut-
most importance in the context of climate change, but the rel-
evant multimodel results were mostly global studies without
details for China, and the research for the China domain was
limited to a single model or a single chemical component.
There has been a lack of studies on long-term historical aero-
sol changes, ERF, and associated temperature responses and
climate sensitivity in China based on CMIP6. Most impor-
tantly, few studies constrained model-simulated results using
observations. In this work, we use results from experiments
conducted as part of CMIP6 to make an assessment of histori-
cal climate change by aerosols in China from 1850 to 2014. As
illustrated in Fig. 1, we initially present the historical change
in aerosol concentrations and AOD (section 3a). Subse-
quently, we analyze aerosol ERF (from both equilibrium and
transient simulations; section 3b), followed by the aerosol-
induced change in surface air temperature (SAT; section 3c)
and the climate sensitivity to aerosols (CSA; section 3d). Ad-
ditionally, we employ observational data to constrain the out-
comes of the model simulations and get the adjusted aerosol
ERF, aerosol-induced SAT change, and CSA by using the ob-
served AOD and SAT (section 3e).

2. Data and methods

a. CMIP6 simulations

In this work, we use results of CMIP6 simulations from 10
models, namely, ACCESS-CM2, ACCESS-ESM1-5, CanESM5,
CESM2, GFDL-ESM4, GISS-E2-1-G, HadGEM3-GC3.1-LL,
IPSL-CM6A-LR, MIROC6, and NorESM2-LM (Table 1) that
participated in both RFMIP and DAMIP. RFMIP can provide
the estimates of aerosol historical ERF, and DAMIP can provide
the historical change in surface temperature induced by aerosol
ERF. Model outputs are available on the Earth System Grid
Federation (ESGF; https://esgf-node.llnl.gov/search/cmip6/).

The simulated historical monthly data such as aerosol con-
centrations, AOD at 550 nm, and near-surface (usually 2 m)
air temperature (SAT) for 1850–2014 were obtained from the
historical simulations (all-forcing simulations of the recent
past; experiment id: historical) in CMIP6 (see Table S2 for a
detailed list of variables). However, not all the models in
CMIP6 had direct outputs of PM2.5. To ensure consistency
across models, concentrations of PM2.5 were calculated as the
sum of the dry aerosol mass of sulfate (SO22

4 ), nitrate (NO2
3 ),

ammonium (NH1
4 ), organic aerosol (OA), black carbon (BC),

sea salt (SS; with a factor of 0.25), and dust (DU; with a factor
of 0.1), following the equation PM2:5 5 SO22

4 1NO2
3 1

NH1
4 1OA1 BC1 0:13DU1 0:253 SS as in previous

studies (Allen et al. 2020; Turnock et al. 2020; Xu et al. 2022).
This equation assumes that 100% of SO22

4 , NO2
3 , NH1

4 , OA,
and BC are fine mode, whereas 25% of the sea salt and 10%
of the dust are fine mode. The historical change in each vari-
able mentioned in this study refers to the difference (denoted
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by symbol D) between the present day (PD; 11-yr mean of
2004–14) and the preindustrial (PI) time (11-yr mean of
1850–60) unless otherwise stated.

The estimates of ERF were provided by RFMIP (Pincus
et al. 2016) through two types of simulations (time-slice simu-
lations and transient simulations). In time-slice simulations
(experiment id: piClim-* in Table 2), forcing agents were held
constant at the present-day (year 2014) values for at least
30 years, and the present-day ERF was calculated as the

difference in net downward radiative flux at the TOA be-
tween the perturbed and control runs (30-yr running means).
For simulations with a duration longer than 30 years, the lat-
est 30 years were selected. Such ERF is called equilibrium
ERF (EERF). Transient simulations (experiment id: piClim-
hist* in Table 2) were designed to capture the historical tran-
sient ERF in CMIP6, where the forcing agent concentrations
evolved over time. The present-day ERF in transient simula-
tions was calculated as the change in net downward radiative

TABLE 1. Information of 10 CMIP6 models and main available data used in this study. The symbol D denotes historical change in
PD (11-yr mean of 2004–14) relative to the PI period (11-yr mean of 1850–60). ADSAT is aerosol-induced historical change in
surface air temperature. The symbol � denotes that the corresponding variable results are available from the model. Concentrations
of PM2.5 are calculated as PM2:5 5 SO22

4 1NO2
3 1NH1

4 1OA1 BC1 0:13DU1 0:253 SS. The term “opd” denotes the direct
output of PM2.5 from the models.

Model
Horizontal resolution
(latitude 3 longitude) DPM2.5 (opd) DAOD AEERF ATERF ADSAT

ACCESS-CM2 (Bi et al. 2020) 1.258 3 1.8758 � � �
ACCESS-ESM1-5 (Bi et al. 2013;

Law et al. 2017; Ziehn et al. 2020)
1.258 3 1.8758 � � �

CanESM5 (Swart et al. 2019) 2.88 3 2.88 � � � �
CESM2 (Danabasoglu et al. 2020;

Emmons et al. 2020)
0.948 3 1.258 � � � �

GFDL-ESM4 (Dunne et al. 2020;
Horowitz et al. 2020)

18 3 1.258 �(�) � � �

GISS-E2-1-G (Kelley et al. 2020) 28 3 2.58 �(�) � � � �
HadGEM3-GC3.1-LL (Kuhlbrodt

et al. 2018)
1.258 3 1.8758 � � � � �

IPSL-CM6A-LR (Lurton et al. 2020) 1.268 3 2.58 � � � �
MIROC6 (Tatebe et al. 2019) 1.48 3 1.48 �(�) � � � �
NorESM2-LM (Seland et al. 2020) 1.8758 3 2.58 �(�) � � � �
Sum 10 6(4) 10 10 6 10

CMIP6 RFMIP

DAMIP

historical 
simulation

historical change in  
PM2.5 (ΔPM2.5)

historical change in 
AOD (ΔAOD)

aerosol equilibrium  
effective radiative 
forcing (AEERF)

aerosol transient   
effective radiative 
forcing (ATERF)

aerosol-induced 
historical change in 

surface air 
temperature (AΔSAT)

adj_AEERF

adj_AΔSAT

climate sensitivity of 
aerosols (CSA)

equilibrium CSA (ECSA)

transient CSA (TCSA)

adj_ECSA

adj_ATERF

adj_TCSA

Observational 
constraint

AOD (MODIS)
SAT (CRUTEM5)

FIG. 1. Framework and main contents in this study. Details of model simulations are shown in section 2a, and
approaches of constrain by using observations are described in section 2e.
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flux at the TOA in PD relative to PI, which is called transient
ERF (TERF). Out of the 10 models mentioned, all the
10 models performed time-slice simulations and can provide
aerosol EERF (AEERF), but only six of them performed
transient simulations and can provide aerosol TERF (ATERF)
(Table 1).

DAMIP (Gillett et al. 2016) performed historical simula-
tions with natural forcings only, anthropogenic greenhouse
gases alone, and anthropogenic aerosols alone, facilitating the
estimation of climate response (DSAT) to individual forcing
(experiment id: hist-* in Table 2). All 10 models mentioned
above performed transient simulations in DAMIP and can
provide aerosol-induced DSAT (ADSAT) (Table 1). The
GHGs in RFMIP and DAMIP refer to carbon dioxide (CO2),
methane (CH4), nitrous oxide (N2O), and a long list of halo-
carbons, as described by Meinshausen et al. (2017).

All data were spatially interpolated to a grid resolution of
18 3 18 using bilinear interpolation to enable a meaningful
comparison between models (Wang et al. 2021; Xu et al.
2015). For each CMIP6 model, data were obtained from three
ensemble members with different initial conditions for each
experiment whenever possible, which can reduce the impact
of unforced (i.e., internal) variability and enhance the clarity
of the signal of interest. This requirement aligns with the ex-
perimental protocol (Eyring et al. 2016; Gillett et al. 2016;
Pincus et al. 2016). Transient simulations in RFMIP do not fol-
low this requirement. In this study, the results of multimodels
are presented by multimodel mean (MMM) 6 multimodel
standard deviation (MMSD). Prior to calculating MMM,
the selected ensemble members are averaged for each
model.

The CMIP6 historical anthropogenic emissions of aero-
sols or aerosol precursors are from the Community Emis-
sions Data System (Hoesly et al. 2018). The datasets
provide anthropogenic emissions from eight sectors of activ-
ities (agriculture, energy, industrial, transportation, residen-
tial–commercial–other, solvent production and application,
waste, and international shipping) with a 0.58 horizontal
resolution. Gridded versions of these data are accessible
through ESGF. Anthropogenic emissions for all species in-
creased significantly in China over the years, as indicated in
Table S4 and Fig. S1. The largest increases centered in
densely populated city clusters, such as the North China
Plain (NCP), the Yangtze River Delta (YRD), the Pearl
River Delta (PRD), the Sichuan basin (SCB), and the
Fenwei Plain (FWP), all located in eastern China (EC;
188–448N, 1038–1228E) (Figs. S2 and S3).

b. Observational data

The monthly level-3 (MOD08_M3) Moderate Resolution
Imaging Spectroradiometer (MODIS; Remer et al. 2005) AOD
product, collected from the Terra platform, was used in this
study. The AOD data, from February 2000 to December 2014,
were retrieved at 550 nm with a horizontal resolution of 18
longitude 3 18 latitude.

The observational station data of monthly SAT from
1850 to 2014 in China were acquired from the Climatic Re-
search Unit Temperature version 5 (CRUTEM5; Osborn
et al. 2021). Stations that provided data for all 12 months
per year were selected to calculate the annual mean SAT.
The historical changes in observed SAT and the number
of available stations are presented in Fig. S4. Prior to

TABLE 2. The experimental design of RFMIP (Pincus et al. 2016) and DAMIP (Gillett et al. 2016) considered in this study.

MIP Experiment ID Experiment description Major purposes for this study

RFMIP piClim-control Preindustrial climatology control simulations for at
least 30 years

Baseline for model-specific ERF
calculations

piClim-anthro The same as piClim-control, but with present-day
(2014) anthropogenic forcings (GHGs, aerosols,
and land use)

Quantify present-day (2014) total
anthropogenic ERF

piClim-aer The same as piClim-control, but with present-day
(2014) aerosols

Quantify present-day (2014) ERF
by aerosols

piClim-ghg The same as piClim-control, but with present-day
(2014) GHGes

Quantify present-day (2014) ERF
by GHGes

piClim-histall Preindustrial climatology simulations with time-
varying forcing by all agents from 1850 to 2014

Diagnose transient ERF from all agents

piClim-histaer The same as piClim-histall, but with time-varying
anthropogenic aerosols only

Diagnose transient ERF by aerosols

piClim-histghg The same as piClim-histall, but with time-varying
GHGes only

Diagnose transient ERF by GHGes

piClim-histnat The same as piClim-histall, but with time-varying
natural forcings (volcanoes and solar variability)
only

Diagnose transient ERF by natural
forcings

DAMIP hist-aer Anthropogenic-aerosol-only historical simulations
from 1850 to 2014

Estimate the historical change in air
temperature caused by aerosols

hist-GHG Greenhouse gas–only historical simulations from
1850 to 2014

Estimate the historical change in air
temperature caused by GHGes

hist-nat Natural-only historical simulations from 1850 to 2014 Estimate the historical change in air
temperature caused by natural forcings
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approximately 1950, the national mean temperature ex-
hibited fluctuations due to limited station coverage and
uneven distribution. However, after 1950, as monitoring
efforts improved, a general upward trend in temperature

was observed. To facilitate comparisons with simulated
temperatures, the observed temperatures were interpo-
lated to 18 3 18 grids by the Cressman interpolation
method.

FIG. 2. Spatial distributions of the changes in annual mean surface-layer concentrations of AERs in PD (11-yr mean of 2004–14) relative
to the PI period (11-yr mean of 1850–60) from six CMIP6 models (mg m23). Species here include SO22

4 , NO2
3 , NH1

4 , OA, BC, and PM2.5.
Concentration of PM2.5 was calculated by PM2:5 5 SO22

4 1NO2
3 1NH1

4 1OA1 BC1 0:13DU1 0:253 SS. The blank plot indicates
that this model has no output for this AER species variable. MMM is the mean of the models that provide data for each species. The rect-
angle in the top-left plot defines the region of EC (188–448N, 1038–1228E). The change averaged over EC is shown in each plot’s bottom-
right corner. Results from the significance test are not shown in this figure because almost all the grid cells over China have statistically sig-
nificant changes at p, 0.05.
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c. D&A method

In this study, we conducted a detection and attribution
analysis on the changes in SAT by employing the three-signal
optimal fingerprinting method to separate the individual influ-
ence of each external forcing on SAT during 1950–2014. The
observed SAT change from CRUTEM5 was regressed onto
the modeled SAT responses to GHGs, aerosols (AERs), and
natural (NAT) forcings using the least squares algorithm. The
regression equation is given by Y 5 bGHG 3 XGHG 1 bAER 3

XAER 1 bNAT 3 XNAT 1 «. The term Y is the observed SAT
change from CRUTEM5. The term X is the fingerprint that
represents the response to individual external forcing (GHG,
AER, and NAT) obtained from CMIP6 multimodel means.
The regression coefficients b are the scaling factors that ad-
just the fingerprint values to yield the best match to the ob-
servations. When b lies above zero, the corresponding signal
is detected. If b is close to unity, it suggests that the simulated
responses to the corresponding forcing are in agreement with
the observed changes. A scaling factor that is greater (or less)
than unity demonstrates underestimation (or overestimation)
of the signal to a specific forcing by the models. The term « is
the unforced (internal) variability in SAT, which can be esti-
mated by using unforced preindustrial control simulations
from CMIP6 models.

We performed the optimal fingerprinting analyses on the
changes in SAT in five typical city clusters (NCP, YRD, PRD,
SCB, and FWP) and eastern China as shown in Fig. S3. The
regional averages for these areas were calculated for both
observed and modeled SATs from 1950 to 2014. The original
65-yr chunk was then transformed into 13 nonoverlapping
5-yr means from 1950–54 to 2010–14 and fed into the regres-
sion model. For the internal variability «, a total number
of 155 nonoverlapping 65-yr chunks for SAT were extracted
from the available preindustrial control simulations of
10 CMIP6 models (Table S3). For each chunk, « was averaged
in the same way as Y and X, transforming the 65-yr time se-
ries into 13 nonoverlapping 5-yr means. To avoid spurious de-
tections, these chunks were divided into two sets. The mean
of one set (78 chunks) was used to ascertain the internal vari-
ability to obtain the best estimates of b in the regression equa-
tion. The mean of the other set (77 chunks) is used to conduct
a residual consistency test to check whether the estimated re-
gression residuals fit with modeled internal variability using
an F test. The attributable trend of SAT for each external
forcing was calculated as the linear trend of the external forc-
ing multiplied by the corresponding scaling factor. The pre-
mise of attribution analysis is that the scaling factor in
detection analysis is greater than 0.

d. CSA

CSA, the amount of aerosol-induced change in air tem-
perature per unit aerosol ERF, is a widely used measure to
quantify the relationship between aerosol forcing and its
resulting impact on air temperature (Liu and Liao 2017;
Shindell 2014; Shindell and Faluvegi 2009; Shindell et al.
2015). CSA was calculated as slope [8C (W m22)21] of the
linear regression that passes the origin of the scatterplot

of aerosol-induced DSAT (y axis) versus aerosol ERF
(x axis) from each of the multimodels. Using the aerosol
ERF from equilibrium and transient simulations, we can
obtain equilibrium and transient climate sensitivity to aerosols,
respectively.

When calculating equilibrium climate sensitivity, the dif-
ference between equilibrium and transient responses needs
to be considered. Considering the historical simulations
can provide the transient ADSAT, the equilibrium ADSAT
can be calculated for each grid as equilibrium ADSAT 5

transient ADSAT 3 DSAT (piClim-aer 2 piClim-control)/
DSAT (piClim-histaer), following Shindell and Faluvegi
(2009).

Based on this, this study utilizes linear regression on the
AEERF and equilibrium ADSAT from the 10 models to ob-
tain the equilibrium CSA (ECSA) and linear regression on
the ATERF and ADSAT from the six models to obtain the
transient CSA (TCSA). The spatial distribution of CSA is de-
rived by fitting aerosol ERF and ADSAT at each grid point.
When calculating the CSA for the entire EC, the regional
means of aerosol ERF and ADSAT are first calculated,
followed by linear regression to determine the CSA for the
region.

e. Observational constraint

Using the statistical linear correlation between the uncer-
tain aspect of climate change [usually unobservable, so-called

FIG. 3. Time series of annual mean AOD averaged over five
typical city clusters (NCP, YRD, PRD, SCB, and FWP) and EC
(188–448N, 1038–1228E) over 1850–2014 from CMIP6 models
(gray line). The black line is 10 MM, and the brown line is
MODIS over 2000–14. Three models with better simulations of
AOD are shown by pink, and the thicker one is the mean of
them (3 MM).
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unobservable variable (UBV)] and an observable characteris-
tic known as the constraint factor (CF) in the current climate
from multimodels makes it possible to use contemporary ob-
servation of CF to constrain UBV (Liu et al. 2022; Watson-
Parris et al. 2020). As shown in Fig. S5a, initially, the linear
equation that best fits the relationship between UBV Y1 and
CF X was calculated using multimodel results. Subsequently,
the observed CF XO value was inserted into the equation to
derive the constrained UBV adj_Y1. If UBV and CF exhibit a
positive correlation, a low bias in multimodel-mean CF com-
pared to its observation would lead to an underestimation of
UBV. Using the relationship between two UBVs Y1 and Y2,

one of which has previously been constrained adj_Y1, the
constrained value of another UBV adj_Y1 can be obtained
(Fig. S5b).

In this study, AOD (mean of 2000–14) can be used as X,
and AOD (mean of 2000–14) from MODIS is XO. SAT
(mean of 1950–2014) can also be used as another X, and SAT
from CRUTEM5 is another XO. The variables of the aerosol
climate effect that we need to constrain, AEERF, ATERF,
and ADSAT, can be used as Y1 and directly constrained by
the XO, or they can be used as Y2 and indirectly constrained
by theXO through a transition variable Y1. The determination
of the constrained variables and processes is presented

FIG. 4. Spatial distributions of the changes in annual mean AOD in PD (11-yr mean of 2004–14) relative to the PI period (11-yr mean
of 1850–60) from 10 CMIP6 models and 10 MM. The mean of three models with better simulations of AOD is also shown (3 MM). The
change averaged over EC (188–448N, 1038–1228E; the rectangle in the first plot) is shown at the top right of each plot. For each grid, statis-
tically significant change at p, 0.05 is marked with dot.
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in section 3e. After obtaining the constrained AEERF,
ATERF, and constrained ADSAT, the constrained climate
sensitivity is calculated as the constrained ADSAT divided
by the constrained aerosol ERF. It should be noted that
when calculating the constrained ECSA, the ratio mentioned
in section 2d should also be considered to correct the
constrained ADSAT. When calculating the CSA in EC,
the ERF and ADSAT averaged over EC should be used for
the calculation.

3. Results

a. Historical change in concentrations of aerosols
and AOD

The simulated changes in annual mean surface-layer concen-
trations of aerosols in PD relative to PI from CMIP6 models
are shown in Fig. 2. The concentration of PM2.5 was calculated
by the equation PM2:5 5 SO22

4 1NO2
3 1NH1

4 1OA1 BC 1

0:13DU1 0:253 SS. There were differences in concentra-
tions of PM2.5 between the models due to the different aerosol
mechanisms. CESM2 simulated the lowest DPM2.5 among all
models (11.13 mg m23) because it provided the fewest types of
aerosol concentrations (SO22

4 and BC only). GFDL-ESM4 and
GISS-E2-1-G are the only two models that include NH1

4 and
NO2

3 (i.e., they include all major aerosol species), and GFDL-
ESM4 simulated the highest DPM2.5 (35.36 mg m23). CMIP6
models simulated an increase in annual mean surface PM2.5 con-
centrations over EC of 21.43 6 7.58 mg m23 (6 MM 6 6 MSD)
from PI to PD. The historical increases in surface aerosols over
eastern China were primarily driven by the large increases in an-
thropogenic emissions of aerosols and aerosol precursors over the
PI–PD period. The simulated largest changes in PM2.5 concentra-
tions were located in SCB and NCP, consistent with the largest
increases in anthropogenic emissions (Fig. S2). As for aerosol

components, OA and SO22
4 were simulated to have the largest

changes of exceeding 12 mg m23 (MMM) over the SCB and
NCP. BC was the species with the lowest increases in all models,
with the 6 MM (66 MSD) value of 2.63 (60.66) mg m23 in EC.

Estimation of climate effect of air pollutants relies not only
on surface-layer concentrations but also on column burdens.
Figure 3 shows the time series of annual mean AOD averaged
over five city clusters (NCP, YRD, PRD, SCB, and FWP) and
EC from CMIP6 models, compared with the satellite retriev-
als from MODIS. In all regions, simulated AOD (10 MM)
had small changes from 1850 to around 1950 and then in-
creased sharply when anthropogenic emissions increased
markedly, and the increase over SCB was the most pro-
nounced. From around 2010, the increasing trend of AOD in
each region tends to be flat or even decline. The model satis-
factorily captures this trend of changes but with larger magni-
tude. From 2000 to 2014, the annual mean AOD averaged
over EC increased by 0.20 6 0.17 from the model (10 MM 6

10 MSD) and by 0.06 from MODIS. The simulated AOD of
CMIP6 (10 MM) was higher than the MODIS observation for
each year from 2000 to 2014 (except for 2001). The main rea-
son is that the high AOD area from the models is larger than
that from the observation (Fig. S6). As shown in Fig. 3, simu-
lated regional mean AOD values were close to observations
in YRD and PRD, but they had high biases in SCB and FWP
and large low biases in NCP. The same underestimation of
AOD in NCP was also reported in other studies (Dang and
Liao 2019; Li et al. 2016). Qi et al. (2013) found that MODIS
retrievals in northern China tended to show higher AOD
values than those obtained from AERONET sites. Various
factors including local anthropogenic emissions, chemistry
schemes, and model resolution collectively contribute to the
uncertainties associated with AOD in climate models (Chang
et al. 2015).

FIG. 5. ERF averaged over EC (188–448N, 1038–1228E) from (a) time-slice simulations in 2014 relative to 1850
(10 models) and (b) transient simulations in PD relative to PI (six models). ALL forcings (black) were divided into
NAT forcings (green) and ANT forcings (gray). ANT is further divided into AERs (blue), GHGs (red), and OTH
(purple). The values of ERF by AER and ANT are also shown. The mean of all 10 models (10 MM), the mean of the
six models that performed both time-slice and transient simulations (6 MM), and the mean of three models with bet-
ter simulations of AOD (3MM) are also shown.
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Spatial correlation coefficients R between each of the 10
CMIP6 models and MODIS were in the range of 0.06–0.84,
while the R between 10 MM and MODIS was 0.79 (Fig. S6),
indicating that multimodel mean can improve the biases
of single models. Three models (ACCESS-CM2, ACCESS-
ESM1-5, and HadGEM3-GC3.1-LL) had better simulations
of AOD (MBSA), which meet the selected thresholds of
R . 0.75 and the absolute value of normalized mean bias
(NMB), 15%. The time series of annual mean AOD averaged
over five typical city clusters and eastern China from these
three MBSAs is also shown in Fig. 3. The three-model-mean
(3 MM) AODs were lower than 10 MM AODs from 1850 to
2014, and the values in 2000–14 were closer to MODIS values,
but still underestimated in NCP (Fig. 3). Historically, all models
simulated the increases in AOD in most regions of China, with
the increases being higher in EC and lower in western China,
consistent with the spatial distribution of historical increases in

aerosol concentrations (Fig. 4). The largest simulated DAOD
occurs in SCB. From PI to PD, the increase in AOD in EC was
0.47 6 0.33 (10 MM 6 10 MSD). As for the three MBSAs, the
DAOD in EC was 0.45 6 0.01 (3 MM 6 3 MSD), with smaller
uncertainty range.

b. Aerosol ERF

Figure 5a shows the ERFs from RFMIP multimodel time-slice
simulations that are averaged over EC (188–448N, 1038–1228E).
Anthropogenic (ANT) drivers include GHGs (including CO2,
CH4, N2O, and a long list of halocarbons), AERs, and others
(OTH). From 1850 to 2014, the increases in aerosols led to a
negative equilibrium ERF of 24.91 6 2.56 W m22 (10 MM 6

10 MSD) over EC, which agrees closely with aerosol ERF in
2005 (24.14 W m22) in eastern China (208–458N, 1058–1228E)
obtained by Liu and Liao (2017) using phase 5 of the CMIP
(CMIP5) multimodel results. The negative ERF in this study

FIG. 6. Six MM ERF by ALL forcings (black line), AERs (blue line), GHGs (red line), and NAT forcings (green
line), averaged over EC (188–448N, 1038–1228E) from transient simulations over the period of 1850–2014. (a) Annual
mean, (b) mean of each decade, and (c) sliding 11-yr mean. The light blue shaded area in plot (a) shows the spread of
the six models’ data (from minimum to maximum) of AERF.
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is higher, which can be partly explained by the higher AOD
in 2014 relative to 2005. The absolute value of negative ERF
of 3 MM is smaller than that of 10 MM, which is consistent
with the smaller DAOD in 3 MM. Over EC, the absolute
value of negative ERF caused by the increases in aerosols
was larger than that of the positive ERF brought by the in-
creases in GHGs, leading to a net negative ERF by anthropo-
genic drivers.

Transient simulations provide transient ERF (Fig. 5b) of all
(ALL) forcings, which can be divided into ANT and NAT.
Only six models conducted transient simulations. From PI to
PD, aerosol transient ERF over EC was 25.35 6 2.40 W m22

(6 MM 6 6 MSD). Aerosol transient ERF was bigger than its
equilibrium ERF in all of the six models except for MIROC6.
Figure S7 shows the aerosol DRF (the aerosol-induced
change in radiative flux under clear-sky condition) and cloud
radiative forcing (CRF; the difference between ERF and
DRF) (Rotstayn and Penner 2001) averaged over eastern
China from equilibrium and transient simulations. Only five
models have both equilibrium and transient DRF and CRF
values. The means of these five models show that the equilib-
rium and transient DRF values are 25.85 and 25.87 W m22,
respectively; the equilibrium and transient CRF values are
0.45 and 0.14 W m22, respectively, and the equilibrium and

FIG. 7. Spatial distributions of simulated annual mean AEERF in 2014 relative to 1850 from time-slice simulations of 10 CMIP6
models and 10 MM. The ERF averaged over EC (188–448N, 1038–1228E; the rectangle in the first plot) is shown at the top right of
each panel. For each grid, statistically significant change at p , 0.05 is marked with dot. The mean of three models with better simula-
tions of AOD is also shown (3 MM). The bottom-left corner of each plot shows every model’s ARFE (AER radiative forcing per unit
AOD change).
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transient ERF values are25.40 and25.73 Wm22, respectively.
Therefore, the transient ERF is larger than the equilibrium
forcing because of the smaller positive CRF in the transient
simulations.

Same as equilibrium ERF, the negative ERF caused by the
increases in aerosols was larger than the positive ERF from
the increases in GHGs, leading to a net negative ERF by
ANT and further a net negative ERF by all forcings, with
practically zero contributions from NAT or OTH. Transient
simulations also provide a complete time series of ERFs from
1850 to 2014 (Fig. 6). ERF by all forcings (black lines in
Fig. 6) was almost unchanged until 1950, after which it began
to show negative values. This was mainly due to the negative
ERF by aerosols, although it was partly offset by positive
ERF by greenhouse gases. Unlike the global turning point in
about 1980 (Smith et al. 2021), the turning point for China
was around 2000, after which the negative aerosol ERF weak-
ened slightly.

Figure 7 shows the spatial distributions of simulated
present-day annual mean equilibrium ERF by aerosols (year
2014 relative to 1850) from time-slice simulations. The geo-
graphical distribution of aerosol ERF shows higher negative
values of25 to220 W m22 over the southern China. Aerosol
ERF varies greatly among the models, in terms of both mag-
nitude and spatial distribution. The largest negative aerosol
ERF values were simulated in southeastern China in
ACCESS-ESM1-5 and GISS-E2-1-G; in southwestern China in
ACCESS-CM2, CESM2, HadGEM3-GC3.1-LL, NorESM2-LM,
and MIROC6; and in the whole southern China in CanESM5,
GFDL-ESM4, and IPSL-CM6A-LR. Some models showed
positive aerosol ERF values in certain regions, such as north-
ern China and western China, likely due to the high surface al-
bedo enhancing the effect of absorbing aerosols (Schulz et al.
2006). Moreover, the positive ERF values could also be linked

to the changes in clouds and longwave radiation resulting
from the quick adjustment of the atmosphere (Wang et al.
2014). The spatial distributions of aerosol transient ERF
were about the same as those of aerosol equilibrium ERF in
most models (Fig. S8).

Although the aerosol indirect effect is considered in all the
CMIP6 models, the parameterizations of aerosol–cloud inter-
actions are quite different. Figure 7 also presents aerosol radi-
ative forcing efficiency (ARFE), defined as aerosol radiative
forcing per unit AOD change or aerosol burden change
(Kasoar et al. 2016; Myhre et al. 2013b; Samset et al. 2013).
Over EC, ARFE (ERF averaged over EC divided by DAOD
averaged over EC) values were in the range of 24.29 W m22

in HadGEM3-GC3.1-LL to 221.73 W m22 in MIROC6. Con-
sidering the three MBSAs, ACCESS-ESM1-5 had the small-
est DAOD of 0.44, whereas the largest aerosol ERF was
28 W m22; thus, its ARFE (218.27 W m22 per unit AOD
change) was the largest among the three models. When we
use aerosol transient ERFs to calculate ARFE, the results are
slightly larger than using equilibrium ERFs, as a result of the
larger transient ERF with the same DAOD in each model (ex-
cept MIROC6) (Fig. S8). There are many reasons for the dif-
ferences in ARFE, such as radiative transfer schemes, surface
albedo, cloud interactions, and other different properties in
different models (Kasoar et al. 2016; Myhre et al. 2013b;
Randles et al. 2013; Stier et al. 2013).

c. Aerosol-induced change in SAT

From PI to PD, simulated changes in annual mean SAT av-
eraged over EC were warming in almost all 10 CMIP6 models
(except for NorESM2-LM), with the 10 MM (610 MSD)
value of 10.57 (60.46)8C, in which GHGs caused an in-
crease of 1.81 (60.5)8C and aerosols caused a decrease of
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FIG. 8. Change in simulated annual mean SAT from 10 models
averaged over EC (188–448N, 1038–1228E) in PD relative to PI by
different forcings. ALL forcings (black) were divided into NAT
forcings (green) and ANT forcings which is further divided into
AERs (blue), GHGs (red), and OTH (purple). The mean of all
10 models (10 MM) and the mean of three models with better sim-
ulations of AOD (3 MM) are also shown.

FIG. 9. Time series of annual mean SAT averaged over EC
(188–448N, 1038–1228E) of 10 CMIP6 models from four experi-
ments: historical (ALL; black line), hist-aer (AER; blue line),
hist-GHG (GHG; red line), and hist-nat (NAT; green line). The
observational data from CRUTEM5 are also shown (orange line).
The light blue shaded area shows the spread of the 10 CMIP6
models’ data in hist-aer.
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1.37 (60.38)8C (Fig. 8). The aerosol-induced air tempera-
ture decrease of 21.378C in this study is slightly larger
than the 21.058C obtained by Liu and Liao (2017) using
the CMIP5 multimodel results, which is consistent with
the previous comparison of ERF (24.91 W m22 from this
work vs 24.14 W m22 in Liu and Liao 2017). Simulations
from the 3 MBSAs (3 MM) obtained a larger aerosol cool-
ing of 21.658C over EC.

Figure 9 shows the time series of annual mean SAT
(10 MM) averaged over EC from four experiments: historical,
hist-aer, hist-GHG, and hist-nat. The simulated SAT was
lower than the observed value from CRUTEM5, because of

the underestimation in the central and western ECs, such as
the SCB and Hubei Province (Fig. S9). Over 1920–80, aero-
sols and greenhouse gases had pronounced effects on SAT,
with a similar magnitude but opposite sign relative to 1850.
Starting around 1980, the aerosol-induced cooling tended to
have a small change (stayed around 21.58C relative to 1850)
and GHG-induced warming kept increasing, which led to
an overall warming of about 18C in 2014 relative to 1850.
Figure 9 also shows that the air temperature in hist-nat
remained relatively stable from 1850 to 2014.

All the 10 models simulated a national cooling by aerosols,
with large cooling in EC (Fig. 10). NCP, SCB, and the Yangtze

FIG. 10. Spatial distributions of AER-induced change in simulated annual mean SAT in PD (11-yr mean of 2004–14) relative to the PI
period (11-yr mean of 1850–60) of 10 CMIP6 models and 10 MM in the simulation hist-aer. The change averaged over EC (188–448N,
1038–1228E; the rectangle in the first plot) is shown at the top right of each plot. For each grid, statistically significant change at p, 0.05 is
marked with dot. The mean of three models with better simulations of AOD is also shown (3 MM).
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River basin were the areas with the largest cooling, which did
not agree with the spatial distributions of aerosol ERF in Fig. 7,
because the changes in temperature can be affected not only
by local ERF but also by energy transport through large-scale
atmospheric or oceanic circulations (Shindell et al. 2015;
Shindell et al. 2010). The models vary in the spatial distribu-
tion of temperature decrease. The simulated cooling effect
from the 3 MBSAs (3 MM) was larger than 10 MM, with the
largest cooling of 21.758 to 22.08C in NCP and SCB. Given
that ACCESS-CM2 and HadGEM3-GC3.1-LL simulated a
similar AOD change and slightly different aerosol ERF, it is
surprising that there were large differences in the magnitude
of simulated climate response. Averaged over EC, while
HadGEM3-GC3.1-LL had the smallest AEERF among all
models of21.92 Wm22 and the largest aerosol-induced cooling
of 2.068C, ACCESS-CM2 had an AEERF of22.71 W m22 and
cooling of 1.488C. The climate response does not follow the
magnitude of ERF, which can be explained by the different
climate sensitivity in different models (Flato et al. 2013;
Voulgarakis and Shindell 2010).

We performed the optimal fingerprint analysis on the
changes in SAT over five typical city clusters (NCP, YRD,
PRD, SCB, and FWP) and EC (Fig. S3) to quantify the con-
tribution of aerosols to historical climate change more accu-
rately. All regions passed the residual consistency test.
The scaling factors are shown in Fig. 11a. AER signals can be
detected in NCP, YRD, PRD, and EC, as indicated by the
scaling factors that are larger than zero over these regions.
SAT responses to AER are relatively well aligned with the
observations, as the scaling factors over NCP (b 5 0.64),
PRD (b 5 1.58), and EC (b 5 0.57) are close to 1.0. However,
b over YRD (2.12) is much higher than 1.0, indicating the
considerable underestimation of aerosol-induced SAT change

by models. The scaling factors of AER in SCB and FWP
are lower than zero. D&A analysis of each grid nationwide
(Fig. S10) indicates that the aerosol effect can be detected in
most grids in NCP, YRD, and PRD, but can only be detected
in small areas of SCB and FWP, such as the border area of
the three provinces in FWP and the easternmost part of SCB.
The observed and attributable trends of SAT are illustrated
in Fig. 11b. The observed warming trends were 0.0098–
0.0298C yr21 in the five city clusters and 0.0198C yr21 in EC.
Aerosols were found to cause the largest cooling trend in
YRD (20.0278C yr21), which also offset the maximum per-
centage (68%) of GHG-induced warming. Aerosol offset
GHG-induced warming in the NCP and PRD by 35% and
52%, respectively. Over EC, considering the warming of
0.0198C yr21 from 1950 to 2014, aerosols caused a cooling of
0.0078C yr21, which offset 28% of the GHG-induced warm-
ing (0.0268C yr21). The trend in SAT caused by NAT was
small and insignificant; therefore, the difference between the
warming trend caused by GHGs and the observed warming
trend was all contributed by aerosols.

d. CSA

CSA was defined as aerosol-induced change in air tempera-
ture per unit aerosol ERF. The ECSA was calculated using
AEERF and equilibrium ADSAT from 10 models, and the
TCSA were calculated using ATERF and ADSAT from six
models (section 2d). Over EC, ECSA was 0.2368C (W m22)21,
which was slightly greater than TCSA of 0.2228C (W m22)21.
Our results are in agreement with previous studies. Shindell and
Faluvegi (2009) reported that the regional climate response to
sulfate aerosol over the latitudinal range of 288–608N was about
0.258C (Wm22)21. Liu and Liao (2017) estimated ECSA in east-
ern China (208–458N, 1058–122.58E) to be 0.248C (W m22)21 us-
ing the multimodel results from CMIP5.

Figure 12 shows the spatial distributions of ECSA and
TCSA. Both ECSA and TCSA were obviously lower in
southern China [,0.28C (W m22)21] and higher in northern
China [.0.28C (W m22)21], divided by the Qinling Mountains
and the Huaihe River. In some parts of Xinjiang, climate
sensitivity was negative; that is, the positive ERF in this area
caused decreases in temperature. Local climate sensitivity
varied strongly due to the presence of different feedbacks
(e.g., snow/ice albedo and ocean circulation) (Shindell et al.
2015). Shindell et al. (2015) also showed that CSA in the
Northern Hemisphere extratropic is greater than in the
tropics. In the southern coastal region, ECSA is slightly larger
than TCSA. In the northern EC, TCSA is slightly larger than
ECSA.

e. Observation-constrained aerosol climate effect

As mentioned in section 2e, an UBV can be constrained by
the observed CF through the statistical linear correlation of
these two variables from multimodel simulations. To con-
strain the climate effect of aerosols, the variables that need to
be constrained include AEERF, ATERF, and ADSAT. A
variable Y1 can be directly constrained by XO, or a variable
Y2 can be indirectly constrained by XO through a transition

FIG. 11. (a) Detection and (b) attribution of annual mean SAT
change over five typical city clusters (NCP, YRD, PRD, SCB, and
FWP) and EC from 1950 to 2014. (a) Scaling factors and their 90%
confidence intervals for GHG (red), AER (blue), and NAT
(green). (b) Attributable trends of SAT (8C yr21) to GHG (red),
AER (blue), and NAT (green) signals compared with the observed
trends from CRUTEM5 (gray). An asterisk (*) indicates that the
trend is not statistically significant (p. 0.05).
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variable Y1, as shown in Fig. S5. The term XO used in this
study is AOD (mean of 2000–14) from MODIS or SAT
(mean of 1950–2014) from CRUTEM5.

The values of each variable averaged over EC (188–448N,
1038–1228E) were used to calculate the correlation coefficients
between each other. We show first the correlation coefficients
calculated by using model results from the 10 models which
provide values of AEERF and ADSAT (Fig. 13a). Among all
the variables considered, AEERF has the best correlation
(determined by the largest absolute value of correlation coef-
ficient) with DAOD, so DAOD can be used to constrain
AEERF. In the meantime, DAOD has the best correlation
with AOD, indicating AOD_MODIS can be used to constrain
DAOD to get adj_DAOD and subsequently adj_AEERF.
Similarly, ADSAT has the best correlation with DSAT, while
DSAT has the best correlation with SAT, so SAT_CRUTEM5
can be used to constrain DSAT to get adj_DSAT and subse-
quently adj_ADSAT. The black arrows in the figure show
these two processes.

The constrained results by using the 10 models are shown in
Fig. 14. The observation-constrained AEERF (adj_AEERF)
has a similar spatial distribution to AEERF_10MM (Fig. 7) ex-
cept that the largest negative forcing is now in PRD. Averaged
over EC, while AEERF_10MM is 24.91 W m22, adj_AEERF
is24.66 W m22, which is due to the overestimation of AOD by
0.08 and hence the overestimation of DAOD by 0.06. The val-
ues of adj_AEERF minus AEERF_10MM are positive in most
regions such as SCB and FWP, indicating that adj_AEERF has
smaller negative forcing in these regions relative to AEERF_
10MM. On the contrary, adj_AEERF has larger negative forc-
ing in NCP and PRD relative to AEERF_10MM. The spatial
distribution of adj_AEERFminus AEERF_10MM corresponds
well to that of adj_DAOD minus DAOD_10MM for the rea-
sons mentioned above.

The values of adj_ADSAT minus ADSAT_10MMwere neg-
ative nationwide except in the northeastern China, indicating
enhanced cooling by aerosols after the constraint as compared
to ADSAT_10MM. The enhanced cooling was the largest in
central China. As a result, adj_ECSA had a similar spatial dis-
tribution to ECSA, but the values were approximately dou-
bled. In EC, adj_ADSAT was 21.478C and adj_ECSA was
0.328C (Wm22)21.

Similarly, considering the six models that provide outputs of
ATERF, the same approaches can be obtained as shown in
Fig. 13b: 1) using AOD_MODIS to constrain DAOD and then
using adj_DAOD to constrain ATERF; 2) using SAT_
CRUTEM5 to constrain DSAT and then using adj_DSAT to
constrain ADSAT. The climate sensitivity after constraint is
calculated as adj_TCSA 5 adj_ADSAT/adj_ATERF. It should
be noted that adj_DAOD, adj_DSAT, and adj_ADSAT in-
volved in this set of constraints were obtained by using the re-
sults of six models.

FIG. 12. Spatial distributions of (a) ECSA, (b) TCSA, and
(c) the difference between ECSA and TCSA [8C (W m22)21]. For
each grid, the slope that pass the significance test at p , 0.05 is
marked with dot.
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FIG. 13. The correlation coefficients between the variables aver-
aged over EC (188–448N, 1038–1228E) from CMIP6 multimodels.
The variables are from (a) 10 models and (b) six models. AERF in
(a) is the AEERF. AERF in (b) is the ATERF. Arrows represent
the processes of constraining, as described in the text. PI indicates
the PI time (11-yr mean of 1850–60), and PD indicates the PD
(11-yr mean of 2004–14).
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FIG. 14. Observation-constrained results of historical changes in AERs and their climatic effects using 10 models.
(left) Observed AOD from MODIS or the constrained values of other variables and (right) the difference between
(left) and the respective simulated value (10 MM). The value averaged over EC (188–448N, 1038–1228E) is shown in
each plot’s bottom-left corner.
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FIG. 15. Observation-constrained results of historical changes in AERs and their climatic effects using six models.
(left) Observed AOD from MODIS or the constrained values of variables and (right) the difference between (left)
and the respective simulated value (6 MM). The value averaged over EC (188–448N, 1038–1228E) is shown in each
plot’s bottom-left corner.
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The constrained results are shown in Fig. 15. The spatial
distribution of adj_ATERF is basically the same as that of
adj_AEERF, with the highest negative values in PRD. Aver-
aged over EC, adj_ATERF was24.93 W m22 as compared to
the ATERF_6MM of 25.35 W m22. The spatial distribution
of adj_ATERF minus ATERF_6MM is also similar to that of
adj_AEERF minus AEERF_10MM. Averaged over EC, adj_
ADSAT was 21.688C, which was stronger than the ADSAT_
6MM value of 21.448C. The Adj_TCSA in EC was 0.348C
(W m22)21.

4. Conclusions

This study used the CMIP6 multimodel results to analyze
the changes in aerosols since industrialization as well as the
associated aerosol ERF and aerosol-induced SAT changes us-
ing simulations from RFMIP and DAMIP. Most importantly,
we used observations to constrain the modeled ERF, changes
in SAT, and climate sensitivity to aerosols. Considering the
availability of model outputs, either six-model-mean (6 MM)
or 10 MM was analyzed.

Averaged over EC, the simulated annual mean surface PM2.5

concentration and AOD increased by 21.43 6 7.58 mg m23

(6 MM6 6 MSD) and 0.476 0.33 (10 MM6 10 MSD), respec-
tively, from PI to PD. The simulated largest increases in AOD
occurred in SCB. Compared to observations from MODIS, the
CMIP6 models (10 MM) overestimated AOD by 0.08 as the val-
ues were averaged over EC and years of 2000–14, which were
used to constrain aerosol ERF.

The increases in historical aerosols in EC led to an equilibrium
ERF of 24.91 6 2.56 W m22 (10 MM 6 10 MSD) from time-
slice simulations and a transient ERF of 25.35 6 2.40 W m22

(6 MM6 6 MSD) from transient simulations. The negative ERF
values were generally larger in southern China and smaller in
northern China. After the constrain by using observed AOD
from MODIS, adj_AEERF and adj_ATERF over EC were
24.66 and24.93Wm22, respectively.

The negative aerosol ERF caused nationwide decreases in
SAT in China, especially in areas with large increases in
AOD such as SCB, but the distribution of DSAT was not con-
sistent with that of aerosol ERF, mainly because local temper-
ature changes were not solely related to local radiative flux
changes. The time series of DSAT exhibited large absolute
values starting around 1950 and reached a cooling of 1.378 6
0.388C (10 MM 6 10 MSD) by aerosols averaged over EC in
PD relative to PI. The CMIP6 models underestimated SAT
compared to the observations from CRUTEM5. After the
constrain by using SAT from CRUTEM5, adj_ADSAT was
21.47 W m22 over EC.

The spatial distributions of equilibrium CSA and transient
CSAwere similar to each other in China, with low CSA in south-
ern China and high CSA in northern China. Over EC, ECSA
was 0.2368C (W m22)21 and TCSA was 0.2228C (W m22)21.
The adjusted CSA after constraint is calculated by dividing
adjusted ADSAT by adjusted aerosol ERF. The adj_ECSA and
adj_TCSA were higher in magnitude but kept a similar spatial
distribution. The adj_ECSA and adj_TCSA in EC were 0.328
and 0.348C (Wm22)21, respectively.

Our study constrained aerosol ERF using only the observed
AOD. Further studies should also consider aerosol single
scattering albedo for the constraint of absorbing aerosols.
Moreover, we will use observations to constrain the predicted
future climatic effects of aerosols.
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