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Abstract. Dust storms pose significant risks to health and
property, necessitating accurate forecasting for preventive
measures. Despite advancements, dust models grapple with
uncertainties arising from emission and transport processes.
Data assimilation addresses these by integrating observations
to rectify model error, enhancing forecast precision. The en-
semble Kalman filter (EnKF) is a widely used assimilation
algorithm that effectively optimize model states, particularly
in terms of intensity adjustment. However, the EnKF’s effi-
cacy is challenged by position errors between modeled and
observed dust features, especially under substantial position
errors. This study introduces the valid time shifting ensem-
ble Kalman filter (VTS-EnKF), which combines stochastic
EnKF with a valid time shifting mechanism. By recruiting
additional ensemble members from neighboring valid times,
this method not only accommodates variations in dust load
but also explicitly accounts for positional uncertainties. Con-
sequently, the enlarged ensemble better represents both the
intensity and positional errors, thereby optimizing the uti-
lization of observational data. The proposed VTS-EnKF was
evaluated against two severe dust storm cases from spring
2021, demonstrating that position errors notably deteriorated
forecast performance in terms of root mean square error

(RMSE) and normalized mean bias (NMB), impeding the
EnKF’s effective assimilation. Conversely, the VTS-EnKF
improved both the analysis and forecast accuracy compared
to the conventional EnKF. Additionally, to provide a more
rigorous assessment of its performance, experiments were
conducted using fewer ensemble members and different time
intervals.

1 Introduction

Dust storms, identified as natural meteorological disasters,
are phenomena closely associated with the prevalence of po-
tent winds over arid regions with a loosely packed soil com-
position (Zhang et al., 2005; An et al., 2018). These storms
enable dust particulates to ascend to remarkable heights,
traversing distances of thousands of kilometers, with docu-
mented aerosol concentrations soaring to thousands of mi-
crograms per cubic meter (µgm−3) (She et al., 2018). Dur-
ing transportation, these aerosols further participate in het-
erogeneous chemical reactions with SOx and NOx , exacer-
bating the severity of aerosol pollution (Song et al., 2022),
thereby significantly endangering human health through res-
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piratory and circulatory system impairments (Gross et al.,
2018; Goudie, 2014). East Asia, a dominant source and re-
cipient of dust activity (Hu et al., 2019), has witnessed in-
tensified scholarly focus. Notably, the spring of 2021 ob-
served the onslaught of several super dust storms – un-
precedented in intensity and geographical span over the past
decade (Filonchyk and Peterson, 2022) – resulting in sub-
stantial life and property losses across Mongolia and China
(Gui et al., 2022; Jin et al., 2022; Tang et al., 2022). Conse-
quently, the imperative for an accurate and timely forecast-
ing system for dust storms is accentuated, aiming to mitigate
their detrimental impacts.

In recent years, heightened public concern has fueled ad-
vancements in deciphering the physical mechanisms gov-
erning dust cycle dynamics, leading to significant strides
since the 1990s. To accurately replicate dust storm behav-
ior, numerous dust emission parameterization schemes have
been devised, including MB95 (Marticorena and Bergametti,
1995), Shao96 (Shao et al., 1996; Shao, 2004), Zender03
(Zender et al., 2003), and the more recent K14 (Kok et al.,
2014). Integrated within chemical transport models, these
frameworks facilitate dust storm modeling exercises, ex-
emplified by systems such as CUACE/DUST (Gong and
Zhang, 2008), BSC-DREAM8b (Pérez et al., 2006; Mona
et al., 2014), GEOS-Chem (Duncan Fairlie et al., 2007), and
LOTOS-EUROS (Timmermans et al., 2017; Manders et al.,
2017). These models are instrumental in assessing health
hazards; quantifying the planet’s ecosystem responses; eluci-
dating large-scale climate drivers; and, importantly, inform-
ing the development of early warning systems capable of pre-
dicting imminent dust loads within timescales ranging from
hours to days. Despite these advancements, the forecast skill
of such models remains constrained by inherent uncertain-
ties tied to input variables – such as wind velocity fields
and initial/boundary conditions – as well as computational
approximations necessitated by coarse spatial and temporal
resolutions (Mallet and Sportisse, 2006). Of particular note,
the scientific consensus highlights the emission parameteri-
zation uncertainty as the paramount source of error in dust
storm simulations (Ginoux et al., 2001, 2012; Di Tomaso
et al., 2017, 2022; Jin et al., 2019a, b). Consequently, the
predictive prowess of numerical dust models is notably com-
promised under the weight of these combined limitations.

Observational studies constitute another pivotal approach
in elucidating the intensity and spatial dispersion of dust
storms (Akhlaq et al., 2012). Among these, satellite-based
monitoring technologies have rapidly evolved into a preva-
lent tool for dust storm detection, offering expansive and de-
tailed insights (Gui et al., 2022). Platforms like MODIS, Hi-
mawari, and Fengyun-4A deliver a wealth of data on aerosol
characteristics, characterized by high spatial resolution and
global coverage. Nonetheless, these satellite products aggre-
gate column-integrated information and are prone to interfer-
ence from cloud cover and other atmospheric constituents,
thereby introducing substantial uncertainties and biases into

dust load estimates. Consequently, preprocessing is impera-
tive to ensure their reliability in depicting actual dust con-
centrations (Jin et al., 2019b, 2022). Concurrently, ground-
based observational networks, known for their reliability and
fine temporal resolution, play a crucial role in precisely mea-
suring aerosol concentrations (She et al., 2018). China, in
particular, has made substantial investments in constructing
its ground monitoring infrastructure, establishing an expan-
sive network comprising over 1600 stations nationwide. This
dense grid of ground stations furnishes a granular view of
dust plume dynamics across the region (Gui et al., 2022), en-
riching the dataset for examining east Asian dust storms and
reinforcing the national observation network’s capacity for
comprehensive dust research.

Data assimilation stands as a potent methodology that
harmoniously merges model with observations. Rooted in
Bayesian principles, its objective is to ascertain the most
plausible model state posterior, given the available obser-
vations, through probabilistic estimation (Law and Stuart,
2012). The realm of data assimilation encompasses two prin-
cipal methodologies: variational techniques and filtering al-
gorithms. Variational methodologies, exemplified by 4DVar,
strive to determine an optimal analysis that reconciles both
prior knowledge and observational constraints over a de-
fined temporal span, achieved by optimizing a predefined
cost function (Rabier and Liu, 2003). These methods are
prominently employed in tasks such as inverse modeling for
initial conditions and emission fields (Jin et al., 2022; Berga-
maschi et al., 2010; Corazza et al., 2011), as well as in re-
analysis endeavors. However, their implementation hinges
on the often intricate development and maintenance of tan-
gent linear or adjoint model forms. Furthermore, the compu-
tational burden associated with minimizing the cost function
escalates dramatically with the complexity and dimension-
ality of the models. Conversely, filtering methodologies as-
similate observations sequentially, aligning them favorably
with operational forecasting frameworks. This class includes
the Kalman filter (Kalman, 1960), its extension in the ex-
tended Kalman filter (Brunner et al., 2012), and the more so-
phisticated particle filter (Leeuwen et al., 2019). Prominent
among these is the ensemble Kalman filter (EnKF), distin-
guished for its adeptness at managing high-dimensional sys-
tems, amenability to parallel computation (Evensen, 1994;
Katzfuss et al., 2016; Houtekamer and Zhang, 2016), and re-
liance on ensemble members to infer background error co-
variance structures (Hamill, 2006; Houtekamer et al., 2014).
Its virtues encompass nonlinearity accommodation, dispens-
ing with the necessity for explicit tangent linear calculations,
and computational efficacy (Bannister, 2017), rendering it a
favored tool across domains, including weather prediction
(Houtekamer et al., 2005) and hydrological studies (Reichle
et al., 2002). Despite these strengths, the EnKF, as an ex-
tension of the Kalman filter, presumes Gaussian error dis-
tributions (Amezcua and Van Leeuwen, 2014). When deal-
ing with non-Gaussian error statistics, EnKF can create sub-
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optimal outcomes for the linearized dynamics or operators
and sampling errors caused by finite ensemble members (Lei
et al., 2010).

Uncertainty in dust storm modeling predominantly stems
from the real-time estimation of dust emissions, leading to a
research emphasis on emission inversion through data assim-
ilation techniques. Studies such as those conducted by Yu-
mimoto and Takemura (2015) leveraged long-term MODIS
aerosol optical depth (AOD) retrievals for emission inversion
across Asia. Similarly, Escribano et al. (2017) underscored
the varying impact of distinct satellite AOD datasets on emis-
sion inversions over northern Africa and the Arabian Penin-
sula, revealing instances where model uncertainties outweigh
observational uncertainties in determining assimilation out-
comes. Building upon this foundation, recent investigations
have delved deeper into the intricacies of dust emission vari-
ability in the Mongolian and Chinese Gobi deserts. This in-
cludes the assimilation of ground-level PM10 concentrations
(Jin et al., 2018), polar-orbiting MODIS satellite data (Jin
et al., 2022), and geostationary Himawari-8 AOD measure-
ments (Jin et al., 2019b). To refine emission inversion pro-
cesses, innovations like observation bias correction (Jin et al.,
2019a), adjoint-based emission source tracking (Jin et al.,
2020), and grid adjustment methodologies (Jin et al., 2021)
have been introduced, significantly advancing our under-
standing of dust emission dynamics and their environmen-
tal and climatic implications. Despite these advancements,
the application of sequential forecasting methodologies uti-
lizing filtering techniques for dust storms has received lim-
ited exploration. To address this gap, we have recently engi-
neered an operational dust forecasting framework that inte-
grates the ensemble Kalman filter (EnKF) with the LOTOS-
EUROS model. This integration is facilitated by our cus-
tom assimilation software, PyFilter (Pang, 2024). Testing
this system against the backdrop of the record-breaking dust
storms of spring 2021 has demonstrated marked improve-
ments in both the assimilated analyses and forecast results
compared to standalone model forecasts. Notably, when con-
figured with an appropriate localization radius, it consistently
outperformed the EnKF, highlighting the potential for local-
ized filters in enhancing the precision of dust storm forecast-
ing.

Despite the encouraging outcomes of our experimental as-
sessments, several challenges persist, chief among them be-
ing a spatial misalignment between model forecast and ob-
servations following long-distance dust transport. This dis-
parity not only encompasses discrepancies in the estimated
dust intensity but also manifests in inaccuracies regarding the
timing of dust arrival and departure, as will be elaborated in
Sect. 2.4. In the context of dust storm forecasting evaluation,
both the intensity and the position accuracy of the dust plume
are paramount. Intensity directly correlates with the amount
of airborne dust, while the position is vital for understand-
ing where the dust plume affects at a given instant. For op-
erational forecasting and warning systems, pinpointing the

correct location of impending dust impacts can carry even
greater urgency than estimating dust load precisely. Quan-
titatively, these spatial mismatches significantly deteriorate
the forecast performance when evaluated using conventional
measures like the root mean square error (RMSE). The un-
derlying causes of this spatial discrepancy and its broader
ramifications on forecasting efficacy will be meticulously ex-
amined in Sect. 3.2.

The phenomenon labeled “position error” in dust aerosol
simulations typically emerges following long-distance trans-
port. This error is multifaceted, stemming from a constella-
tion of factors including the simplification of physical pro-
cesses in models, coarse spatial and temporal resolutions,
indeterminate values of physical parameters (Ravela et al.,
2007), and uncertainties inherent to both meteorological in-
puts and the precise timing of dust emissions, as we previ-
ously highlighted (Jin et al., 2021). Resembling the issues en-
countered in dust emission inversion, discrepancies between
model forecast and observations in dust storm data assimila-
tion efforts can also be traced back to uncertainties in dust
emission estimates, where ensemble simulations incorporate
varied emission scenarios. The challenge lies in the quan-
tification of position error and its subsequent inaccurate for-
mulation of the background error covariance matrix. Con-
sequently, EnKF calibrates both intensity and position er-
ror, while it cannot handle position errors if the ensemble
is under-dispersive with regard to position. This deficiency
curtails the capacity of current assimilation methodologies
to correct position error.

Position error is not an occasional issue. Instead, it is
an error that accumulates as simulations progress, plaguing
forecasts such as hurricanes, dust storms, convective thun-
derstorms, and precipitation (Dance, 2004; Nehrkorn et al.,
2015; Jin et al., 2021). However, efforts explicitly targeting
the mitigation of this error have been relatively scarce. One
pioneering study by Brewster (2003) outlined an objective
methodology to pinpoint and rectify position errors lever-
aging a wealth of high-resolution, densely deployed obser-
vational data. Their findings in Observing System Simula-
tion Experiments (OSSEs) affirmed the feasibility of correct-
ing positional errors. Jin et al. (2021) developed a grid dis-
tortion strategy grounded in image morphing techniques for
post-processing, effectively realigning modeled dust plumes
to conform more closely with observations. While these en-
hancements underscore the potential for addressing position
errors, their efficacy hinges critically on the availability of
a comprehensive and closely spaced observational network.
Regrettably, in many practical scenarios, observational cov-
erage is patchy and incomplete, curtailing the broad applica-
tion of these corrective measures.

In this paper, the EnKF is coupled with a valid time shift-
ing (VTS) strategy, referred to henceforth as VTS-EnKF,
specifically tailored to mitigate position errors prevalent in
long-distance dust storm transport. The VTS methodology,
inspired by prior works such as Xu et al. (2008), Lu et al.
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(2011), Zhao et al. (2015), and Huang and Wang (2018),
augments the EnKF by incorporating temporal flexibility
to better align simulated dust plumes with observations. In
practice, the VTS-EnKF enhances the background error co-
variance estimation for each assimilation cycle by consid-
ering not solely the immediate ensemble members but also
those from neighboring time points, slightly before and after
the target moment (Gasperoni et al., 2022, 2023). By doing
so, this approach encapsulates a broader range of potential
dust plume positions, thereby inherently compensating for
transport-related inaccuracies without necessitating intricate
adjustments to observations, meteorological inputs, or other
underlying physical parameters. The efficacy of the VTS-
EnKF was assessed against two severe dust storm events that
occurred in 2021. Our findings underscore the substantial im-
provement offered by this hybrid method over EnKF, partic-
ularly in scenarios where significant position errors are evi-
dent in the model prior. This advancement paves the way for
more precise and temporally coherent dust storm forecasting,
especially amidst the complexities of long-distance transport.

This paper is organized as follows: Sect. 2 introduces the
dust measurements and dust model used in the research. We
also discuss that the major uncertainty of dust model fore-
cast comes from the emission. But there is another problem:
position error that remains to be solved. Then, in Sect. 3, we
explain the introduction of the procedure of ensemble-based
assimilation algorithm and the mechanism of position error’s
negative effect on EnKF. How the new assimilation method
works is explained in detail afterwards. To test the perfor-
mance of EnKF with VTS, sequential assimilation experi-
ments on several dust storm events are designed. Section 4
analyses the results of experiments in terms of both the as-
similation analysis and forecast performance. Section 5 con-
cludes this paper.

2 Dust observation, model, and position error

In this paper, ground-based PM10 is used as the dust observa-
tion to be assimilated after a bias-correction procedure to re-
move the non-dust part. The dust model adopted is LOTOS-
EUROS. Considering the model processes, the greatest un-
certainty in the dust simulation comes from uncertainty in the
emission parameterization. Meanwhile, uncertainties from
meteorology can also influence the model forecast and lead
to the “position error”.

2.1 Ground PM10 observations

Thanks to the continuous efforts and investments from the
Ministry of Ecology and Environment, over 1600 ground
monitoring stations have been established across China, with
some locations in northern China shown in Fig. 1. These
stations provide real-time hourly air quality data, and their
hourly PM10 concentrations serve as indispensable datasets

for measuring dust load, which are used as observations to be
assimilated in this paper.

Despite the advantages of low uncertainty and high time
resolution, PM10 observations are not assimilated directly
due to the mixed state of dust and non-dust aerosols in the
original PM10 data. Anthropogenic activities, such as vehi-
cle emissions, coal burning, and industrial processes (Wu
et al., 2018; Liu et al., 2018), along with natural sources
like volcanic eruptions, sea spray, wildfires, and wind-blown
dust contribute to the total PM10 concentration. Assimilating
PM10 data directly into a dust model may introduce biases
and lead to model divergence (Jin et al., 2019a). Therefore, it
is necessary to eliminate the bias before data assimilation.

In this study, the non-dust portion of PM10 is approxi-
mated through a separate model. The dust observations as-
similated are calculated by subtracting the non-dust fraction
from the original PM10 measurements. Further details re-
garding the baseline removal (BR) can be found in Jin et al.
(2022).

2.2 Dust model

In this paper, LOTOS-EUROS v2.1 is used to simulate dust
storms that occurred in east Asia. Originating from the
Long-Term Ozone Simulation (LOTOS) and the European
Operational Smog model (EUROS) in the 1980s, LOTOS-
EUROS has undergone continuous development for various
applications. It has been widely used in air quality fore-
casting (Curier et al., 2012; Brasseur et al., 2019; Lopez-
Restrepo et al., 2020; Skoulidou et al., 2021), dust/aerosol
emission inversion (Yarce Botero et al., 2021; Jin et al.,
2018, 2019a, b, 2021, 2022), and source apportionment (Kra-
nenburg et al., 2013; Timmermans et al., 2017; Pommier
et al., 2020; Jin et al., 2020). In spring 2021, several super
dust storm events occurred in east Asia, around 15 March and
28 March. These events, referred to as DSE1 and DSE2, are
used as test cases in this study. These dust storms caused sig-
nificant losses in both Mongolia and China (Jin, 2021; Chen
and Walsh, 2021). Accurate forecast of such severe sand-
storms is crucial for reducing health hazards and property
damage.

To simulate the dust storm over east Asia, LOTOS-
EUROS is configured following our recent work (Jin et al.,
2022): the simulation domain is from 15 to 50° N and 70 to
140° E with a grid resolution of 0.25°× 0.25°. The model
consists of 8 layers with a top at 10 km. The boundary con-
ditions are set to zero assuming that all the dust aerosols are
emitted during the simulation window. Dust emission, depo-
sition, advection, diffusion and dry/wet deposition are con-
sidered within the model. The model output is at the interval
of 1 h.

The whole model simulation period is set from 13 to
17 March for DSE1 and 27 to 30 March for DSE2, which
covers the whole life cycles of emission and long-distance
transport. More details can be found in Jin et al. (2022).
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Figure 1. Evolution of the simulated dust plume from average of ensemble members (a.1–3). Their corresponding standard deviation from
ensemble members (b.1–3) at 08:00, 11:00, and 14:00 on 15 March 2021, respectively. Figures below are the same except the time is
at 05:00 (c.1, d.1), 08:00 (c.2, d.2), and 11:00 (c.3, d.3) on 28 March 2021, respectively. The filled circles represent ground BR-PM10
observations in (a) and (c), and the model-minus-observation differences (absolute value) at various observation sites are in (b) and (d). The
color bar in panel (a) and (c) represents the concentrations, and the color bar in panel (b) and (d) represents the model-minus-observation
differences (left) and standard deviation (right). BR-PM10: baseline-removed PM10. CST: China standard time.

2.3 Uncertainties from emission and meteorology

The goal of this study is to calculate the dust concentration
field that best fits both the a priori information and obser-
vations at each assimilation analysis. The optimized field
will then be used as the initial condition for sequential dust
forecasts, as explained in Sect. 3.1. It is essential to define
and quantify the uncertainty in dust simulations. As pre-
viously mentioned, the uncertainty in emission parameter-
ization is widely believed to be the dominant error source
in dust simulation (Ginoux et al., 2001, 2012; Di Tomaso
et al., 2017, 2022; Jin et al., 2019a, b). High levels of un-
certainty in dust emission parameterization arise from insuf-
ficient knowledge about windblown erosion, lack of accu-
rate input on soil characteristics, and the models’ inability
to resolve the fine-scale variability in wind fields governing
dust emission (Escribano et al., 2017; Foroutan et al., 2017;
Foroutan and Pleim, 2017; Jin et al., 2019b).

In our recent work (Jin et al., 2022), a 4DVar-based in-
verse modeling approach was employed to retrieve an opti-

mal emission field for the three major dust storms in spring
2021 (Jin et al., 2022). The a priori emission, fpriori, followed
the Zender03 dust emission parameterization scheme (Zen-
der et al., 2003). To compensate for potential errors, a spa-
tially varying multiplication factor was introduced. Mathe-
matically, it was quantified by a background error covariance
matrix, B, to describe the potential spread of the actual dust
emission flux.

Another source of the uncertainties arises from the mete-
orological field. In our previous papers, uncertainties from
meteorology and the position error were neither taken into
account (Jin et al., 2022; Pang et al., 2023). In this paper, the
ensemble forecast from the European Centre for Medium-
Range Weather Forecasts (ECMWF) (51 ensemble members
in total) is used. Each one of the model ensemble members
is driven by one unique ensemble meteorology field. Its grid
resolution is about 14 km. The 6-hourly short-term meteo-
rological forecast field is interpolated to hourly values and
re-gridded to match the model resolution.
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In general, we assign the dust simulation uncertainty to
both emission and meteorology. Ensemble emission fields
[f1, . . .,fN] are generated randomly following the emission
uncertainty choice fpriori and B in Jin et al. (2022). Meteo-
rologic fields [w1, . . .,wN] are randomly selected from the
total 51 ensemble meteorology. They are used to forward
the LOTOS-EUROS model M for the ensemble dust sim-
ulations [x1, . . .,xN] as

[x1, . . .,xN] = [M(f1,w1), . . .,M(fN,wN)]. (1)

N refers to the total ensemble number, and the choice will
be explained in Sect. 3.3.

These ensemble individuals are used in the EnKF assimi-
lation for representing the covariance dynamics of the dust
plume, which resulted in more accurate dust analysis and
forecast, as will be shown in Sect. 4. However, the ensemble
realizations mainly represent the uncertainty in the intensity
feature and hardly help resolve the positional deviation be-
tween the observation and simulation. The presence of posi-
tion error would give rise to a divergent assimilation analysis,
as will be illustrated in Sect. 3.1.

2.4 Position error

For all the dust events, most of the dust particles originated
from the Mongolia Gobi desert and were carried by the pre-
vailing wind towards the southeast. After several thousands
of kilometers’ transport, which lasted about 1–2 d, they fi-
nally arrived in the densely populated region of northern
China.

Position errors are clearly visible in the simulation of two
dust events (DSE1 and DSE2). Examples can be best seen
in Fig. 1, which plots the evolution of LOTOS-EUROS-
simulated surface dust concentration alongside BR-PM10
(BR: non-dust baseline-removed) concentration observations
for DSE1 (Fig. 1a) and DSE2 (Fig. 1c). The corresponding
standard deviations from ensemble model simulations and
the model-minus-observation differences (absolute values)
are also plotted in Fig. 1b and d. In Fig. 1a.1, the model gen-
erally simulates a similar shape of the dust plume as indicated
by the observations at the first instance, though the dust load
intensities differ to some extent. However, during the subse-
quent transport, positional errors arise gradually. In Fig. 1a.2,
the right part of the simulated dust plume is positioned about
100 to 200 km too far south compared to ground-based obser-
vations. Consequently, the root mean square error (RMSE)
increases significantly from 587.83 µgm−3 at 08:00 CST to
856.36 µgm−3 at 11:00. This position error continues to ac-
cumulate over the following 3 h at 14:00. The development of
position errors is further clearly visible against the PM10 ob-
servations, especially in the light-blue box in Fig. 1a.3. The
model simulation missed all the dust load there, while the
observations indicate a significant amount of dust aerosols.
It can also be seen in Fig. 1b.3 that the model-minus-
observation differences exceed 1000 µgm−3 there. Similarly,

for DSE2 occurring on 28 March 2021, as shown in Fig. 1c,
discrepancies between observations and simulation become
more explicit as time evolves, especially for the dust in the
light-blue box in Fig. 1c.1 and c.2. The RMSE remains high
from 542.15 µgm−3 at 08:00 to 479.6 µgm−3 at 11:00, and
this error expands to a wider extent as shown in the enlarged
green box in Fig. 1c.3. This position error not only limits the
model forecast performance but also significantly degrades
the subsequent assimilation analysis and forecast. With an
ensemble-approximated background covariance unrepresen-
tative of position error, neither the position deviation nor the
intensity deviation can be fully resolved, as will be explained
in Sect. 3.2.

Potential sources of position error in dust model may
be attributed to inaccuracies in emission timing, uncertain-
ties in meteorological input data (e.g., wind fields respon-
sible for transporting dust plumes from the Gobi Desert in
Mongolia and China to downwind regions), or a combina-
tion of these factors. Adjusting the emission timing profile,
which characterizes the release of soil particles into the at-
mosphere, could partially correct the position of the dust
plume. Moreover, alterations in meteorological conditions
governing long-distance transport might also realign the dust
plume’s position. To address the position error, a compre-
hensive covariance matrix is necessary to account for both
the potential variations in emission temporal profiles and the
accumulation of uncertainties along the plume’s extensive
trajectory. Concurrently, a significantly larger ensemble size
is required to propagate these uncertainties, featuring high
degrees of freedom, into the PM10 observational space. Al-
though a sophisticated covariance matrix and a substantial
ensemble size (resulting in considerable computational cost)
may aid the EnKF in simultaneously resolving position and
intensity errors, this approach is often prohibitively expen-
sive. Therefore, an efficient and cost-effective alternative so-
lution is required.

3 Assimilation methodology and experiments

EnKF is a powerful algorithm to tune the model simula-
tion with observations, especially in intensity adjustment
given the perturbed emission spreads. However, when faced
with the position error, its weakness is exposed that some
model-minus-observation inconsistency cannot be resolved
by EnKF as illustrated in Sect. 3.1. Conversely, our EnKF
with VTS can correct both the position error and the inten-
sity. The assimilation strategy is designed and embedded in
an assimilation forecast system in Sect. 3.2. Experiments are
designed for the dust storms that occurred in spring 2021 and
are illustrated in Sect. 3.3.
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3.1 EnKF

The ensemble Kalman filter (EnKF) was first proposed by
Evensen (1994). Stemming from the Kalman filter, it was
designed to address high-dimensional problems by employ-
ing limited ensemble members to approximate the true back-
ground error covariance. It relies on the Gaussian distribution
of errors. The EnKF has been proven to be practical and effi-
cient in various applications, particularly in sequential fore-
casting with the aid of localization (Lopez-Restrepo et al.,
2020; Park et al., 2022). In any sequential forecast system,
the objective of assimilation analysis is to provide an opti-
mized initial state or parameter field, which, in this study,
corresponds to the 3D dust concentration. This is achieved by
assimilating the available measurements. The estimated dust
concentration field can then be used to forward the model for
more accurate dust forecasting.

Here we use the stochastic EnKF formulated by Burg-
ers et al. (1998). It features the perturbed observations to
maintain a reliable ensemble spread. Starting from the prior
dust concentration field xf,it at time t , which is calculated by
model integral operator M from the dust concentration field
at the previous time step xa,i

t−1,

x
f,i
t =M(x

a,i
t−1,f

i,wi) (2)

Xf = [xf,1t ,x
f,2
t , . . .,x

f,N
t ]. (3)

Note that for the first analysis, the prior dust simulation
is extracted from the model with the perturbed emissions as
shown in Eq. (1); i represents the ensemble individual num-
ber, N is the number of ensemble, and Xf is the ensemble
model simulation matrix consists of the whole ensemble in-
dividuals.

The ensemble perturbation matrix Xf ′ calculates the devi-
ation between the ensemble individuals xf,it and the ensem-
ble mean state xft .

x
f
t =

1
N

N∑
i=1

x
f,i
t (4)

Xf ′ = [xf,1t − x
f
t ,x

f,2
t − x

f
t , . . .,x

f,N
t − x

f
t ] (5)

Then, the background error covariance matrix Pf is ap-
proximated by Xf ′ as follows:

Pf =
1

N− 1
Xf ′Xf ′T. (6)

Afterwards, the Kalman gain K can be calculated with Pf
and O.

K= PfHT(HPfHT
+O)−1 (7)

K weights the increments given from the observations to
the prior estimation. In this paper, they are the BR-PM10 ob-
servations stored in y and dust simulation stored in vector x.

H is the observation operator, which maps the model states
into the observational space.

O is the observational error covariance matrix that weights
the uncertainty of the measurements. In this case, it is the un-
certainties from ground-based BR-PM10 concentrations. O is
defined as follows: the minimum uncertainty threshold is set
to be 200 µgm−3. Standard deviation of observation error be-
low the threshold is set to be 200 µgm−3, and that over it is
set to be 200+ (y− 200)× 0.2 µgm−3. This definition can
prevent the a posteriori field from getting too close to the low
value observations, thus leading to model divergence. O is a
diagonal matrix assuming that all the observations are inde-
pendent.

In the end, the a posteriori estimation individual xa,i
t can

be updated as follows:

x
a,i
t = x

f,i
t +K(y+ εi −Hxf,it ). (8)

εi represents the sampling error vector. It is a random vec-
tor subject to normal distribution. Its mean is 0, and its vari-
ance is the root of diagonal from O.

The equations presented above describe the ensemble
Kalman filter (EnKF) algorithm for dust storm assimilation,
which focuses on intensity adjustment. The EnKF assimila-
tion aims to compute an optimal a posteriori estimation given
a priori information and observations. It is highly dependent
on both the observations and the ensemble spread. In fact, the
ensemble-based background covariance matrix, Pf , utilizes
the ensemble members to approximate the true background
covariance. The performance of EnKF deteriorates when po-
sition errors are present. The underlying mechanism can be
best understood by examining Fig. 2a. At time point t0, there
are ensemble model simulations (dashed gray lines) dis-
tributed across the three-dimensional space. The black line
and blue star represent the average of model ensemble and
observations, respectively. As clearly depicted, there is a po-
sitional mismatch between the ensemble model simulations
and observations. Following the assimilation analysis, the in-
tensity of the dust plume is adjusted to better match the obser-
vations. However, in the spatial domain outside the a priori
field, the dust concentration is reduced to near-zero levels.
The observations in this area, containing valuable informa-
tion about dust load, contribute little to correcting the dust
load. This is due to the unanimous agreement on the dust load
from the model ensemble, which represents low uncertainty.
In such cases, the assimilation analysis favors the model re-
sults and disregards the observations. Consequently, the a
posteriori estimate is biased as a result of ensemble under-
dispersion.

3.2 VTS-EnKF

To efficiently perform the assimilation analysis with both the
intensity and position errors present, we apply a valid time
shifting method in the EnKF. The strategy is illustrated in
Fig. 2b. Instead of using the ensemble simulations solely at
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Figure 2. Strategy illustration of ensemble Kalman filter (EnKF) (a) and ensemble Kalman filter with VTS (VTS-EnKF) (b). The left-hand
figure axis represents the time, and the right-hand axis represents the position of the dust field in 3D space. The vertical axis represents the
intensity of the dust.

Table 1. Experiment settings.

Name Ensemble size used by Initial assimilation Ensemble set Localization
analysis and forecast time set (hour) distance (km)

Control 32 None [32] None
Basic 32 t [32] None
L500 32 t [32] 500
VTS-EnKF 160 t − 2, t − 1, t, t + 1, t + 2 [32,32,32,32,32] None
VTS-L500 160 t − 2, t − 1, t, t + 1, t + 2 [32,32,32,32,32] 500
VTS-EnKF-small 32 t − 2, t − 1, t, t + 1, t + 2 [6,6,8,6,6] None
VTS-L500-small 32 t − 2, t − 1, t, t + 1, t + 2 [6,6,8,6,6] 500
VTS-EnKF-t1 96 t − 1, t, t + 1 [32,32,32] None
VTS-EnKF-t2 96 t − 2, t, t + 2 [32,32,32] None
VTS-EnKF-t3 96 t − 3, t, t + 3 [32,32,32] None
VTS-EnKF-t4 96 t − 4, t, t + 4 [32,32,32] None
VTS-EnKF-t5 96 t − 5, t, t + 5 [32,32,32] None
VTS-EnKF-t6 96 t − 6, t, t + 6 [32,32,32] None

the exact assimilation analysis instant t0, as shown in Fig. 2a,
ensemble members at neighboring moments are also intro-
duced to expand the ensemble group. These resampled en-
semble members at neighboring times represent the potential
positions of the actual dust plume. The enlarged ensemble
exhibits a more extensive spread of the dust plume in the spa-
tial domain compared to that displayed in Fig. 2a. The joint
ensemble model simulations then capture uncertainty in both
intensity and position. The a posteriori estimate (red line) is
adjusted to better fit the observations, with both of these er-
rors resolved.

Mathematically, the procedures of EnKF with VTS are
very similar to those of EnKF, except that the original Xf
is replaced by Xf,new, which stores the enlarged ensemble
members at the assimilation analysis instant and neighboring

times. It starts with

Xf,new
= [x

f,1
t−τ ,x

f,2
t−τ , . . .,x

f,N
t−τ ,x

f,1
t ,x

f,2
t , . . .,

x
f,N
t ,x

f,1
t+τ ,x

f,2
t+τ , . . .,x

f,N
t+τ ]. (9)

Let t be the exact assimilation time and τ be the time inter-
val. Then, t−τ represents the time in the past, and t+τ rep-
resents the time in the future. It is noteworthy that the time
axis, denoted by t−τ and t+τ , is utilized solely to illustrate
the application of ensemble simulations at different time di-
rection in the formula. However, in practical applications, en-
semble members from multiple adjacent time instants can be
incorporated, as demonstrated in the horizon choice utilized
in this study (as presented in Table 1).

Subsequently, the ensemble-based background covari-
ance Pf , Kalman gain K , and a posteriori state xa will be
updated with the Xf,new in Eqs. (6)–(8), respectively.
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Figure 3. Sequential assimilation time set for DSE1 (a) and DSE2 (b). Take DSE1 for instance; the assimilation analysis is performed at the
intervals of 3 h from 11:00 to 17:00, and the rolling forecast is done with a horizon of 24 h based on the assimilation analysis. The EnKF
with VTS and EnKF is performed in turn.

The localization method is also adopted here to cut off the
spurious correlation in Pf and constrain the background co-
variance to a certain distance. The localization matrix is con-
structed following Gaspari and Cohn (1999) (Eq. A.27), with
a distance threshold Lthres. Details about the construction
of L can be found in the Supplement. The localized Pf,local

is obtained by point-to-point multiplication with the localiza-
tion matrix L.

Pf,local
= Pf ◦L (10)

With the localized Pf,local, the localized a posteriori esti-
mation xa,i

t can be updated via Eqs. (7) and (8).
Both the EnKF and EnKF with VTS described above are

embedded in our self-designed assimilation toolbox, PyFilter
(Pang, 2024). This toolbox features a flexible interface for
linking to numerical models (Pang et al., 2023), such as the
dust storm forecasting model LOTOS-EUROS used in this
study.

3.3 Experiment descriptions

DSE1 and DSE2 are chosen as the cases for the test. The
BC-PM10 observations are assimilated. The first assimilation
analysis did not commence until the dust plume was detected
by the ground-based observation network and a position mis-
match emerged. An identification index is also designed to
objectively discriminate the position error as can be found in
Eq. (S6) in the Supplement. Three sequential EnKF analyses
are conducted in each dust event at 3 h intervals. The timeline
for DSE1 and DSE2 is depicted in Fig. 3.

Taking DSE1 as an example, the initial assimilation anal-
ysis is performed at 11:00 on 15 March, when an apparent
position error was present, as illustrated in Fig. 1a.2. The last
analysis is carried out at 17:00 on 15 March. As the dust load-
ing decreases rapidly when the plume moves further south-

east, no additional assimilation is performed. A rolling fore-
cast (red line with arrow) is generated based on the optimized
dust concentration field with a 24 h horizon for the purpose
of examining forecast skill.

To evaluate the performance of the VTS-EnKF-
implemented dust storm forecasting system, data as-
similation experiments are conducted for two spring dust
events in 2021. Experiment settings are shown in Table 1.
Control represents the ensemble model forecast throughout
the entire dust storm period. Basic and L500 denote the
assimilation-based forecasts by EnKF and localized EnKF
(LEnKF) with a localization distance threshold of 500 km,
respectively. VTS-EnKF and VTS-L500 represent the
assimilation-based forecasts by VTS-EnKF and VTS-EnKF
with a localization distance threshold of 500 km. Note that
various distance thresholds have been tested for localization,
and a choice of 500 km is found to provide the optimal
assimilation analysis and forecast in our tested cases. The
metrics, root mean square error (RMSE) and normalized
mean bias (NMB), are employed in this paper to evaluate
system performance. Calculation of the metrics is mentioned
in the Supplement.

In EnKF-based experiments, Basic and L500, the ensem-
ble number N is set to 32, which is found to be sufficient
to represent the uncertainty in the dust simulation while re-
maining computationally affordable. Testing with N greater
than 32 shows only limited improvements. For VTS-EnKF
experiments, the ensemble is expanded as they incorporate
simulations from neighboring instants. To cover the potential
positions of the dust plume, neighboring times with ± 1 and
± 2 h apart are empirically chosen in this paper. As demon-
strated in Table 1, the ensemble number is extended to 160
when EnKF with VTS is applied, and the neighboring time
stamps of 09:00, 10:00, 12:00, and 13:00 are selected. The
160 ensemble dust simulations are updated according to the
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EnKF principles and forwarded synchronously for the new
rolling forecast; they will serve as the prior in the subsequent
assimilation analysis.

Experiments for the VTS-EnKF with equal ensemble
members to EnKF are designed, referred to as VTS-EnKF-
small and VTS-L500-small. They start with 8 central ensem-
ble members and are extended to 32 by incorporating neigh-
boring ± 1 and ± 2 h with 4× 6 ensemble members. Fur-
thermore, to test the sensitivity of neighboring time interval,
VTS-EnKF experiments with different intervals are also de-
signed. Time intervals ranging from 1 to 5 h are selected to
test the impact, which are referred to as VTS-EnKF-t1, VTS-
EnKF-t2, VTS-EnKF-t3, VTS-EnKF-t4, and VTS-EnKF-t5.

4 Results and discussions

The results are discussed in the aspects of assimilation analy-
sis and model forecast. The benefits of using our EnKF with
VTS algorithm for the dust storm simulation with position
errors are emphasized.

4.1 Impact on assimilation analysis

There are noticeable position errors that arise with the trans-
port of the dust storm. In Fig. 1b and d, the spatial distribution
of the standard deviation (square root of the diagonal values
in Pf ) from 32 model ensemble members is clearly shown,
along with the scatter of absolute model-minus-observation
differences in two cases (DSE1, DSE2). In general, their spa-
tial distribution corresponds well to the simulated dust field
depicted in Fig. 1a and c. Concurrently, the uncertainty in the
light-blue box decreases rapidly as the simulated dust plume
moves southward, as illustrated in Fig. 1b.1 and b.2. This
suggests that our ensemble model simulations are highly con-
fident that there are less affected by dust aerosols. However,
the observations indicate that this area remains heavily pol-
luted. In the case of DSE2, the situation becomes more com-
plex. The simulated dust plume in DSE2 covers most of the
observation area with a high dust load, as demonstrated in
Fig. 1c.1 and d.1. The uncertainty, on the other hand, reveals
that the ensemble model is less confident about the dust load,
especially in the light-blue box displayed in Fig. 1d.2. Af-
ter 3 h, these discrepancies become more evident. The extent
to which this situation affects the EnKF assimilation will be
discussed in this paper. It poses a challenge to EnKF assim-
ilation in resolving the high-value measurements in this re-
gion.

Subsequent results have confirmed this theory. Figure 4
displays the spatial distribution of ground BR-PM10 observa-
tions (scatter) and dust field forecasts from the average of the
ensemble (Fig. 4a.1), the a posteriori field from EnKF anal-
ysis (panel a.2) and EnKF with localization (Fig. 4a.3), the
average of the enlarged ensemble (Fig. 4b.1), the a posteriori
field from VTS-EnKF analysis (Fig. 4b.2) and VTS-EnKF

analysis with localization (Fig. 4b.3) at 11:00 on 15 March
2021 China standard time (CST). It should be noted that the
average dust concentrations in Fig. 4b.1 are calculated from
the 160 ensemble simulations used in VTS-EnKF, which
slightly differ from the average of 32 ensemble members.
In DSE1, the RMSE and NMB from the ensemble model
simulation are as high as 856.36 µgm−3 and−78.31 %. Both
EnKF and LEnKF assimilation analyses achieve very lim-
ited improvement in estimating the dust state field. As shown
in Fig. 4a.2 and a.3, the RMSE and NMB remain high at
819.04 µgm−3 and −75.65 % in Basic and 782.57 µgm−3

and −73.52 % in L500. The main reason for this is the en-
semble underdispersion, as described in Sect. 3.2. As ob-
served in the light-blue box in Fig. 4a.1, the simulated dust
plume is located farther southeast compared to the PM10
measurements. This snapshot exhibits an apparent position
error. After EnKF analysis, the simulated dust plume in the
light-blue box barely changes, as depicted in Fig. 4a.2. Nu-
merous ground stations in this area report high PM10 concen-
trations, but the assimilated dust field fails to resolve most of
them. The localization method offers limited assistance in
this situation, as illustrated in Fig. 4a.3. With the unresolved
positional error, the EnKF, which focuses more on intensity
correction, is much less effective.

When it comes to the VTS-EnKF analysis result, an im-
proved dust field can be noticed. Concerning the root mean
square error (RMSE) and normalized mean bias (NMB),
the two priors depicted in Fig. 4a.1 and b.1 exhibit highly
similar performances. However, slight differences do exist.
For instance, the average of the expanded 160-member en-
semble used in VTS-EnKF displays a marginally broader
spread. The increased ensemble size provides more room
for representing background uncertainties. The enhanced ca-
pacity for this is best illustrated in Fig. 6a, which exhibits
the uncertainty quantified by the enlarged ensemble simu-
lations in VTS-EnKF formulations. This expansion of the
uncertainty spread effectively addresses the issue of ensem-
ble underdispersion, thereby boosting the EnKF’s capabil-
ity to handle position errors. In contrast, the relatively low
uncertainty over these areas depicted in Fig. 1b.2 suggests
that the EnKF method is highly confident in the absence of
aerosols and does not require any modification. The obser-
vations are effectively assimilated in the VTS-EnKF anal-
ysis. As displayed in Fig. 1b.2, the dust plume within the
light-blue box is adjusted to better match the observations.
In particular, the dust to the east of the marked region is
well represented in comparison to the a posteriori field of
Basic. The RMSE and NMB are reduced to 742.33 µgm−3

and −68.21 %. Moreover, the a posteriori field of VTS-L500
yields an improved dust field, with the RMSE and NMB fur-
ther reduced to 696.1 µgm−3 and −63.93 %. The implemen-
tation of the localization method eliminates spurious correla-
tions and generates a background error covariance that more
accurately describes the model uncertainties. Despite the no-
ticeable improvements achieved in DSE1, the residual errors,
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Figure 4. Spatial distribution of the simulated dust plume (SDP) on the surface from average of ensemble members at central time (a.1), the a
posteriori SDP updated by EnKF (a.2), the a posteriori SDP updated by EnKF with localization (a.3), central and neighboring time ensemble
model mean (b.1), the a posteriori SDP updated by VTS-EnKF (b.2), and the a posteriori SDP updated by VTS-EnKF with localization (b.3)
at 11:00 CST on 15 March 2021. The filled circles are ground-based BR-PM10 observations. CST: China standard time.

Figure 5. Spatial distribution of the simulated dust plume (SDP) on the surface from the average of ensemble members at central time (a.1),
the a posteriori SDP updated by EnKF (a.2), the a posteriori SDP updated by EnKF with localization (a.3), central and neighboring time
ensemble model mean (b.1), the a posteriori SDP updated by VTS-EnKF (b.2), and the a posteriori SDP updated by VTS-EnKF with
localization (b.3) at 11:00 CST on 28 March 2021. The filled circles are ground-based BR-PM10 observations. CST: China standard time.

as indicated by the RMSE and NMB metrics, remain rela-
tively high. This is mainly due to some observations with
extremely high value (exceeding 5000 µgm−3), which is far
higher than the surrounding stations and hard for the EnKF
to adapt. In particular, the western extent of the dust plume
is covered by the insufficient stations, which results in an in-
adequate representation of the dust load. By incorporating
neighboring ensemble, the dust plume is extended wilder. In
the future research, assimilating satellite-derived dust optical
depth (DOD) observations that have broader coverage may
help to better constrain the enlarged ensemble.

Figure 5 presents the spatial distribution of ground-based
BR-PM10 observations (scatter) and dust concentration fore-
casts from the average of model ensemble (Fig. 5a.1), EnKF

(Fig. 5a.2), and LEnKF analysis (Fig. 5a.3), as well as the
average of the enlarged model ensemble (Fig. 5b.1), VTS-
EnKF (Fig. 5b.2), and VTS-EnKF with localization analysis
(Fig. 5b.3) at 11:00 CST on 28 March 2021. During this as-
similation snapshot in DSE2, the model-simulated dust field
is observed to have moved further southeast, as depicted in
Fig. 5a.1. As illustrated by the light-blue box in Fig. 5a.1,
the model-simulated dust plume missed most of the obser-
vations with high PM10 concentrations. Consequently, al-
though the EnKF analysis remains effective in this case, dust
in the light-blue box is nearly unchanged. The RMSE and
NMB are reduced to 348.13 µgm−3 and−45.96 % in the Ba-
sic scenario, with further reductions to 301.38 µgm−3 and
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−39.12 % when the localization method is employed in the
L500 case.

For the enlarged ensemble, the RMSE and NMB of the a
priori field for VTS-EnKF are 433.08 µgm−3 and −8.93 %.
With VTS-EnKF assimilation, the RMSE of the a posteri-
ori field further decreases to 246.23 µgm−3, and the NMB
is −31.61 % in VTS-EnKF. Unlike Basic, the dust plume in
light-blue box is noticeably optimized to better fit the obser-
vations. The RMSE and NMB are significantly lower than
those obtained with Basic, thanks to the better-scaled back-
ground covariance displayed in Fig. 6. Moreover, by incorpo-
rating localization, the RMSE and NMB are further reduced
to 221.15 µgm−3 and−27.23 % in VTS-L500. The dust load
within the light-blue box (Fig. 5b.3) is accurately reproduced
within its actual range (2000–3000 µgm−3).

4.2 Impact on forecast skills

In addition to the snapshots of the assimilation analysis, a
comprehensive evaluation of forecast skills is also necessary
to see the performance of the VTS-EnKF algorithm. A gen-
eral evaluation of the forecasting skills is carried out in this
section.

Figure 7 presents the time series of the RMSE and NMB
for the 24 h dust forecast after three assimilation analyses in
DSE1 (starting from 11:00, 14:00, and 17:00). In these cases,
the Control run generates a dust field with a high RMSE
(ranging from over 800 µgm−3 to around 600 µgm−3) and
a large NMB (consistently around −85 %). The EnKF anal-
ysis, however, does not improve this dust forecast after the
initial assimilation. In fact, the RMSE and NMB of the dust
forecast from the Basic scenario are nearly identical to the
Control run, as evidenced by the comparison between the
dashed black line and the blue line in Fig. 7a. This result
can be primarily attributed to the position error discussed
in Sect. 2.4. The EnKF algorithm offers minimal assistance
in correcting the model simulation when position errors are
present. These errors are not occasional but cumulative, as
demonstrated in the subsequent two assimilation timestamps
at 14:00 and 17:00, during which the assimilation analy-
sis shows limited improvement over the situation. Moreover,
it has been observed that the localization method only im-
proves the forecast slightly in the presence of position errors.
Similar for the NMB, as depicted in panel b, the improve-
ments are also insignificant. The NMB for the Control, Ba-
sic, and L500 scenarios remains consistently around −85 %
throughout the entire forecast time range.

By applying the VTS-EnKF analysis, a reduction in the
RMSE compared to the model run and EnKF can be observed
in Fig. 7a. There is an approximate decrease of 100 µgm−3

in VTS-EnKF compared to Basic, which indicates that the
VTS-EnKF analysis effectively corrects the position error.
At the subsequent assimilation timestamps, this situation im-
proves, with an even greater decrease in the RMSE. The
RMSE of VTS-L500 is slightly lower than that of VTS-

EnKF. As for the NMB, quite promising results are achieved.
In VTS-EnKF, the NMB decreases stepwise at three time
points, from around −75 % at 11:00 to around −70 % at
14:00 and finally to around −65 %. The VTS-EnKF algo-
rithm gradually takes effect over the three assimilation anal-
yses. In VTS-L500, the localization method demonstrates its
efficacy, especially after the third assimilation timestamp at
17:00. The NMB is reduced to around −60 %, which is sig-
nificantly lower than that of the L500.

Figure 8 displays the time series of the RMSE and NMB
on a 24 h dust forecast after three assimilation analyses in
DSE2. Unlike DSE1, Basic in DSE2 does improve the dust
forecast in terms of the RMSE and NMB. The RMSE drops
from around 500 µgm−3 to less than 400 µgm−3 at the ini-
tial assimilation timestamp (11:00). The NMB here is higher
than Control due to the complementary effect of the NMB.
The overestimation is corrected, while the underestimation
caused by position error is not corrected. No further reduc-
tion is observed at subsequent time points. As can be seen in
Fig. 8a.2 and a.3, the RMSE of Basic remains almost con-
stant compared to Fig. 8a.1. This indicates that the position
error is not corrected, and it constitutes part of the RMSE that
is difficult to eliminate. The trend of the NMB also reflects
this situation. L500 is unable to correct the position error,
although it does help reduce the error to some extent.

In the scenario of the VTS-EnKF analysis, an improve-
ment in the dust forecast of DSE2 is obtained. A general
reduction of RMSE (around 50 µgm−3) in VTS-EnKF com-
pared to Basic can be seen in Fig. 8a.1. Furthermore, in the
subsequent forecasts, a steady decrease in RMSE is noted.
The RMSE fluctuates around 250 µgm−3 after 14:00 and
200 µgm−3 after 17:00. VTS-L500 exhibits a similar pat-
tern to VTS-EnKF for most of the forecast. Considering the
NMB, as shown in Fig. 8b, the NMB of VTS-L500 demon-
strates trivial superiority over VTS-EnKF. In DSE2, Basic
and L500 have already achieved well-reproduced dust fields,
while VTS-EnKF and VTS-L500 can further improve these
fields by correcting the position error.

4.3 Assessment of fewer ensemble members

To further assess the performance of VTS-EnKF, VTS-EnKF
experiments with the same ensemble members as the EnKF
are designed. They are referred to as VTS-EnKF-small and
VTS-L500-small, respectively. These experiments start from
8 ensemble members that are driven by randomly selected
emission and meteorology field from the origin ensemble.
During the initial assimilation, the extra 4× 6 ensemble
members from neighboring± 1 and± 2 h are randomly sam-
pled from these 8 ensemble members. The new ensemble
comprises 32 members which is equivalent to the origin en-
semble number of Basic. Figure 9 displays the time series of
the RMSE and NMB on a 24 h dust forecast after three assim-
ilation analyses in DSE1. In terms of the RMSE, VTS-EnKF-
small only shows slightly better performance than the EnKF.
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Figure 6. Spatial distribution of standard deviation from ensemble members at 11:00 in DSE1 (a) and 08:00 in DSE2 (b). The initial
assimilation analysis is performed at these times. The filled circles are model-minus-observation differences (absolute value). The left-hand
color bar is for model-minus-observation differences, and the right-hand color bar is for standard deviation. CST: China standard time.

Figure 7. Time series of the 24 h root mean square error (RMSE) on the dust forecast starting from 11:00 (a.1), 14:00 (a.2), and 17:00 (a.3)
and the normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), and 17:00 (b.3) on 15 March 2021. CST: China standard time.

This mostly caused by the sampling error arises from lim-
ited ensemble members resampled from the central ensem-
ble (only 8 ensemble members). However, by applying the
localization, the RMSE is noticeably reduced by 100 µgm−3.
The performance is comparable to the VTS-L500 (dashed red
line) with 160 ensemble members in total. By mitigating the
sampling error, the VTS-EnKF’s capability of handling the
position error can be revealed, which can be noticed by com-
parison with L500 and VTS-L500-small. This improvement
can be better seen in the NMB. The NMB of VTS-L500-
small is much lower than Basic and L500. Its performance is
also comparable to the VTS-L500 with 160 ensemble mem-
bers.

The same experiments are also carried out on DSE2. The
results can be found in Fig. S2 in the Supplement. Similar
to DSE1, the VTS-EnKF-small achieves a RMSE and NMB
slightly better than Basic and L500, while in VTS-L500-
small, noticeable improvements can been found, especially
for the forecast after the second and last assimilation. Reduc-
tions of 100 µgm−3 in the RMSE and 20 % in the NMB are
obtained.

4.4 Sensitivity of time interval

Previous research studies have found that an improper neigh-
boring time interval τ can lead to undesirable results, such as
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Figure 8. Time series of the 24 h root mean square error (RMSE) on the dust forecast starting from 08:00 (a.1), 11:00 (a.2), and 14:00 (a.3)
and the normalized mean bias (NMB) starting from 08:00 (b.1), 11:00 (b.2), and 15:00 (b.3) on 28 March 2021. CST: China standard time.

Figure 9. Time series of the 24 h root mean square error (RMSE) on the dust forecast starting from 11:00 (a.1), 14:00 (a.2), and 17:00 (a.3)
and the normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), and 17:00 (b.3) on 15 March 2021. CST: China standard time.
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Figure 10. Spatial distribution of ground-based BR-PM10 observations (scatter) and the simulated dust plume (SDP) on the surface from
the a posteriori SDP updated by VTS-EnKF-t1 (a), the a posteriori SDP updated by VTS-EnKF-t2 (b), the a posteriori SDP updated by
VTS-EnKF-t3 (c), the a posteriori SDP updated by VTS-EnKF-t4 (d), the a posteriori SDP updated by VTS-EnKF-t5 (e), and the a posteriori
SDP updated by VTS-EnKF-t6 (f) at 11:00 CST on 15 March 2021.

less effective ensemble members (interval too small) (τ too
small) or ensemble member clustering and unrepresentative
ensemble covariances (τ too large) (Xu et al., 2008; Gasper-
oni et al., 2022, 2023). To explore the sensitivity of the choice
of neighboring time interval, series of VTS-EnKF experi-
ments with different neighboring time interval were carried
out. Time intervals ranging from 1 to 6 h were tested. As
shown in Fig. 10, snapshots from 6 experiments on DSE1
clearly depicts the trend. In general, all the VTS-EnKF exper-
iments show better performance than EnKF, while in terms
of specific time interval, different patterns can be noticed.
For short intervals including 1 and 2 h, there is not suffi-
cient ensemble spread to account for the position error. Thus
there is still position error remaining, and the RMSE is still
high. For long intervals including 5 and 6 h, the dust plume is
clustered away from central dust plume. Three dust branches
are noticed in VTS-EnKF-t5 and an overly backwards dust
plume is noticed in VTS-EnKF-t6. In this case, 3 h interval is
the best choice with the lowest RMSE (696.11 µgm−3) and
NMB (−63.5 %).

The same experiments are also performed on DSE2, and
snapshots are shown in Fig. S3 in the Supplement. Similar
patterns are found for DSE2. The lowest RMSE and NMB
are achieved in VTS-EnKF-t4. Too short an interval leads to
inability in position error correction, and too long an inter-
val leads to excessive dust plume. Considering both cases,
a 3 h interval is the preferred choice, which holds the capa-
bility to handle position errors and not create an excessively
clustered dust plume.

5 Conclusions

Chemistry transport models (CTMs) are a powerful tool for
air pollutant forecasting. However, as simplified versions of
the real atmospheric world, they suffer from various defi-
ciencies, in terms of two major uncertainties in particular:
emissions and meteorology. Uncertainty from meteorologi-
cal fields can cause model forecast errors, especially in long-
distance transport. In dust storm forecasting applications, a
position error is noted that significantly degrades the overall
performance of the forecast and prevents the EnKF assimi-
lation algorithm from effectively incorporating observational
data.

The background error covariance of EnKF is generally de-
signed to represent the intensity and position uncertainty.
However, when the position error is sufficiently large, the
background error covariance cannot adequately represent the
position error, which is highly non-Gaussian. In the case
of long-distance dust storm tracking, the EnKF is incapable
of thoroughly resolving the observations. Observations over
low model uncertainty pixels are “ignored” by the EnKF al-
gorithm. To address this issue, a valid time shifting method
is coupled with EnKF. This VTS-EnKF methodology intro-
duces uncertainty of the dust plume position into the back-
ground error covariance by incorporating extra ensemble
simulations at neighboring time instances. This enlarged en-
semble not only reflects the uncertainty of dust intensity but
also reveals the potential positions of the plume, allowing for
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more accurate and effective assimilation and improving dust
storm forecasting.

The VTS-EnKF algorithm was tested on two super dust
storm events (DSE1 and DSE2) that occurred in spring 2021.
Several experiments were designed to examine the perfor-
mance of the VTS-EnKF algorithm in these cases, with
a focus on differences between EnKF and VTS-EnKF. In
terms of assimilation analysis, the VTS-EnKF analysis cor-
rected the position error in DSE1 to a large extent. Com-
parison between the standard deviations from the a poste-
riori field of EnKF and VTS-EnKF explained it. The stan-
dard deviations from VTS-EnKF analysis indicated wider
potential dust spread and were more consistent with the
model-minus-observation. Observations that were “ignored”
by EnKF were comprehensively resolved in VTS-EnKF, re-
sulting in the decreased RMSE and NMB. For DSE2, the
position error was not as significant as in DSE1; however,
ensemble underdispersion was also observed. Nevertheless,
VTS-EnKF still produced an improved dust field with a
lower RMSE and NMB compared to EnKF. In both cases,
the localization method helped reduce the RMSE and NMB.
Regarding the forecast performance, promising results were
obtained. In DSE1, the RMSE and NMB revealed that EnKF
provides limited improvements compared to model run. In
contrast, VTS-EnKF provided a dust field forecast with re-
duced errors, especially in terms of NMB. Additionally, the
localization method contributed to further reducing the error.
Overall, the VTS-EnKF algorithm demonstrated improved
performance in assimilation analysis and forecasting for the
tested dust storm events compared to the traditional EnKF
approach.

Assessment of equal ensemble members between EnKF
and VTS-EnKF is carried out. VTS-EnKF with smaller en-
semble size shows slightly improved metrics than EnKF,
while by applying localization, more reduction in the RMSE
and NMB can be noticed, and its performance is comparable
to the VTS-EnKF with larger ensemble size. This is due to
the corrected sampling error within limited ensemble mem-
bers. Comparison between them confirms VTS-EnKF’s abil-
ity in handling position error. Sensitivity of neighboring time
interval choice is also examined. Too short an interval leads
to inability in position error correction, and too long an inter-
val leads to an excessive dust plume. Considering both cases,
the 3 h interval is the preferred choice.
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on Zenodo at https://doi.org/10.5281/zenodo.7611976 (Pang,
2024). The PM10 data used in this study are also archived on
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real-time PM10 data established by the Ministry of Ecology and
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(last access: November 2024) (Wang, 2024). The source code and
user guide of the LOTOS-EUROS model can be obtained from
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