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H I G H L I G H T S  

• A dust storm forecasting system is developed by coupling LOTOS-EUROS and EnKF. 
• Dust forecast is improved when data assimilation is applied. 
• LEnKF is proved to be superior than EnKF in dust storm forecasting. 
• Sensitivities of dust forecast to the localization distance in LEnKF are exploited.  
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A B S T R A C T   

Super dust storms re-occurred over East Asia in 2021 spring and casted great health damages and property losses. 
It is essential to achieve an accurate dust forecast to reduce the damage for early warning. The forecasting system 
fundamentally relies on a numerical model which can forecast the full evolution of dust storms. However, large 
uncertainties exist in model forecasts. Meanwhile, various near-real-time observations are available that contain 
valuable dust information. A dust storm forecasting system is here developed through coupling a chemical 
transport model, LOTOS-EUROS, and Localized EnKF (LEnKF) assimilation approach. The assimilations are 
carried out via an interface of our self-designed assimilation toolbox, PyFilter v1.0. Ground-based PM10 mea-
surements from air quality monitoring network are assimilated. Sequential assimilation tests are carried out over 
the 2021 spring super dust storms. The results show that the assimilation-based forecasting system produces a 
promising dust forecast than model-only forecast, and the improvements is also validated through comparing to 
the independent MODIS aerosol optical depth (AOD). Superior performance is obtained when LEnKF is imple-
mented, as the localization helps EnKF in resolving the PM10 measurements that have a large spatial variability 
with limited ensemble members. In addition, sensitivity experiments are conducted to exploit the distance- 
dependent localization for the LEnKF. Considering both cases, the optimal choice of the distance is tested to 
be around 500 km: the larger distance is less effective in removing the spurious correction, while the smaller one 
easily falls into the local optimum and the model would become divergent rapidly.   

1. Introduction 

Dust storms are defined as severe meteorological disasters by the 
World Meteorological Organization. These events are prevalent in arid 
and semi-arid land (Wang et al., 2017), and are caused by wind erosion 

that liberates particles from exposed, dry surfaces (Joshi, 2021). Dust 
aerosols can be lifted over several miles high depending on the intensity 
of the wind and transport over long distances, even in a global scale, e.g., 
from Africa to the Americas crossing the pacific ocean (Zhang et al., 
2018). Together with the substantial amount of dust aerosols, it has also 
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been proved that long-distance transport of dust in the atmosphere is in 
favour of environmental microorganisms which consist of bacteria, virus 
and spores (Yuan et al., 2017). They pose great threats to human health 
by causing various illness, e.g., breathlessness, cardiovascular disorders 
and allergies (WMO, 2018). In addition, the reduction in visibility would 
cause severe disorders of the transportation and aviation systems. Tak-
ing the 2021 super dust storm in East Asia for example, 10 deaths were 
reported in Mongolia (Chen and Walsh, 2021) and 12 provinces in the 
northern China were affected with thousands of flights grounded and 
public transportation systems halted (Jin et al., 2022). 

Dry soil, rare vegetation, instability in the lower troposphere and 
strong cyclone are the primary factors contributing to dust storms (Zou 
and Zhai, 2004). Dust storms frequently took place in the Arabian 
Peninsula, Southwest Asia, Africa and East Asia (Tanaka and Chiba, 
2006). For century, East Asia has been afflicted by the dust storms, of 
which the source are mainly attributed to the Mongolian and Chinese 
Gobi Desert (Qian et al., 2002). The peak time of the dust storms in Gobi 
Desert is in March, April and May (Kurosaki and Mikami, 2003). When it 
comes to interannual variations, the dust storms occurred frequently 
from the 1950s–1970s, and become less frequent during 1980s and 
1990s (Yin et al., 2021). In the recent two decades, the dust frequency 
stays at a low level thanks to a series of large scale projects initiated by 
Chinese government, such as ‘Three-North’ Shelter Forest Program (Guo 
et al., 2018). On the other hand, the ongoing desertification is reported 
to aggravate the dust hazards (Han et al., 2021). In spring 2021, how-
ever, there were several super dust storms re-occurred in East Asia (Liu 
et al., 2021), which brought huge property losses and health damages 
(Filonchyk, 2022; Jin et al., 2022; Yin et al., 2021). 

Numerical model is an effective tool for implementing dust storm 
forecast, and efforts have been made to develop varies of dust models. 
Typically, a dust model consists of a chemical transport model and 
modules for dust emission and deposition (Shao and Dong, 2006). Since 
the early 1990s, several dust forecast system have been developed, e.g., 
ECMWF’s Integrated Forecast System (IFS) (Morcrette et al., 2008, 
2009), LOTOS-EUROS (Manders et al., 2017; Timmermans et al., 2017) 
and an improved dust emission model implemented in Kok et al. (2014). 
However, numerical prediction of dust storms suffers from uncertainties 
in various aspects, especially in the emission uncertainties (Kontos et al., 
2021). The lack of knowledge about the soil characteristics and wind 
fields that vary in fine-scale, which is difficult for model to resolve, give 
rise to the high levels of uncertainty in dust storm forecast (Jin et al., 
2019a; Jin et al., 2020, 2021). It was found that even from models with 
similar transport patterns, the predicted concentrations on the level of 
surface are different by over two orders of magnitude (Lin et al., 2008). 

In recent decades, there has been an increased focus on the atmo-
spheric environment, resulting in the promotion of the construction of 
ground-based observation and remote sensing technology. Ground- 
based observations, as a fundamental method wildly used by govern-
ment and scientist, can provide data with high accuracy and temporal 
resolution. For example, Ministry of Ecology and Environment has been 
publishing hourly-averaged concentrations of PM2.5, PM10, SO2, NO2, 
CO, and O3 from over 1600 ground stations online since January 2013 
(Guo et al., 2019). However, due to inconsistent spatial distribution of 
stations, leading to spatial sparseness in the ground-based observations. 
Moreover, these stations are located in the densely populated regions for 
the air quality index monitoring, and therefore are far away from the 
dust source region. Remote sensing technology, owning to its broad 
coverage both in spatial and temporal extent (only for geostationary 
onboard instruments), is considered to be a promising method to iden-
tify and monitor the dust storms (Rayegani et al., 2020). There are 
various kinds of remote sensing measurements that are available for dust 
storm monitoring, e.g., aerosol optical depth (AOD) from ground-based 
sun photometers, polar-orbiting satellite and geostationary meteoro-
logical satellite. However, there are larger uncertainties existing while 
AODs are used for representing dust loading, e.g., satellite instrument 
usually measure the column-integrated aerosol extinctions while 

contains no information of the vertical profile (Lorente et al., 2017); 
large uncertainties were found in the Himawari-8 product due to un-
certainty in assumptions regarding aerosol models and surface reflec-
tance estimation in the retrieval algorithm (Zhang et al., 2019). 

As aforementioned, there are deficiencies in using observation data 
or model solely. To make the best of the observation data and model, a 
method called ‘Data Assimilation’ was introduced. Data assimilation can 
intercorporate the observations with models through estimating the 
uncertain initial conditions or parameters, thereby improving forecasts 
(Bertino et al., 2003). It has been wildly applied to many fields, e.g., 
meteorology, oceanography and geography. Data assimilation method-
ologies can be mainly categorized as variational approaches and 
filtering approaches (Bocquet et al., 2015). The variational approaches 
such as 4DVar aim to obtain the optimal analysis by minimizing the cost 
function constructed in time and space in assimilation window (Jin 
et al., 2018). Based on variational approaches, many inverse models 
have been developed and applied in many fields such as atmospheric 
pollutant emission inversion (Corazza et al., 2011; Bergamaschi et al., 
2010; Jin et al., 2018, 2019a). The filtering approaches, e.g., Particle 
filter (Leeuwen et al., 2019), Extended Kalman Filter (EKF) which is a 
nonlinear solution extended from linear system filter: Kalman Filter (KF) 
(Judd, 2003) (these two can hardly be used in the large scale model) and 
Ensemble Kalman Filter (EnKF) (Evensen, 1994) using the background 
error covariance matrix calculated from ensemble statistics and obser-
vation state vector to produce optimal posteriori, which used to be 
computational unaffordable when applied to high dimensional models 
(Houtekamer and Zhang, 2016). Recently, with the continuous increase 
of computing resource, EnKF has been more popular in high dimensional 
models such as global atmospheric models. It can result in effective 
improvement in the forecast with affordable extra numerical cost 
(Burgers et al., 1998). Despite these advantages, there are drawbacks in 
EnKF such as its dependence on the relative small ensemble number 
compared to high model dimensions to estimate background error co-
variances and spurious correlations associated with observations that 
are spatially remote (Hamill et al., 2001; Houtekamer and Mitchell, 
2001). In order to ‘cut off’ the spurious correlations existing in back-
ground error covariance matrix, various localization methods were 
introduced. The most representative one is the distance-dependent 
scheme, in which the correlation between any two grid cells decreases 
from 1.0 to 0.0 as the spatial distance increases (Lei and Anderson, 
2014). 

Many assimilation systems have been developed to improve pre-
dictability of atmospheric aerosols. For instance, the China Unified At-
mospheric Chemistry Environment/Dust (CUACE/Dust) forecast system 
(Gong and Zhang, 2008; Niu et al., 2008; Wang et al., 2008; Zhou et al., 
2008) used a 3DVar method to reconstruct the initial conditions. Ob-
servations including Aerosol Optical Depth (AOD) data from the Chinese 
geostationary satellite FY-2C and surface visibility (phenomena) from 
the China Meteorological Agency (CMA) ground monitoring system are 
incorporated. Kong et al. (2021) developed a PM2.5 forecast system 
coupling 4D-LETKF and WRF-Chem model and results shows that the 
initial concentrations were optimized, RMSE were decreased and cor-
relation coefficients were increased in a large extent. Osores et al. (2020) 
developed a volcanic ash forecast system which coupled ETKF and 
FALL3D, and it turned out that both estimation of ash concentration and 
time-dependent eruption source parameters were optimized. Recently, 
we have developed an emission inversion system by combining 
LOTOS-EUROS and 4DVar assimilation algorithm (Jin et al., 2018), 
which effectively assimilated the aforementioned valuable dust mea-
surements including the ground-based PM10 from the air quality moni-
toring network, Himawari-8 and MODIS AOD. Both data quality controls 
for AOD (Jin et al., 2019a; 2022) and PM10 measurements (Jin et al., 
2019b) were proposed to accurately represent dust loading using those 
observations. An adjoint method was proposed to backtrack the poten-
tial dust source regions for better constructing the emission background 
covariance matrix (Jin et al., 2020). Dust plume position errors in the 
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long-distance transport were solved using grid distorted data assimila-
tion (Jin et al., 2021). However, those studies only focused on calcu-
lating the optimal emission field and all attributed the 
observation-minus-simulation to errors in the emission. Model driven 
by the posterior dust emission field could be used to forecast the dust 
concentration, however, an accurate forecast of the dust plume espe-
cially in fine scale is not guaranteed. This is because the deposition and 
transport errors accumulate along the long-distance movement from the 
Mongolia and Gobi Desert source. Uncertainty of the dust plume simu-
lation in fine scale was also determined by those errors next to the un-
certainty in the emission. When the dust plume already moves to the 
downwind region, it is difficult to reproduce the actual dust field in fine 
scale through the emission inversion by only nudging the emission in-
tensity pattern. Sequential data assimilation systems are indeed in de-
mand for short-term dust plume prediction over East Asia. 

We develop a dust storm forecasting system through coupling the 
regional chemical transport model LOTOS-EUROS and EnKF and 
Localized EnKF (LEnKF) that are embedded in a self-developed assimi-
lation toolbox, PyFilter v1.0. It is capable of providing a high-quality 
dust storm forecast over East Asia. The system is here tested to fore-
cast the 2021 spring super dust storms by assimilating PM10 concen-
tration measurements. The forecasting skill is validated by comparing to 
the independent MODIS Deep Blue AOD measurements. Meanwhile, the 
role of localization on the assimilation analysis is exploited, and the 
optimal localization scheme is determined. 

The paper is organized as follows. Section 2 introduces the frame-
work of our self-developed dust forecasting system. It is composed of a 
CTM, LOTOS-EUROS model, and the Ensemble Kalman Filter (EnKF) 
and the localized Ensemble Kalman Filter (LEnKF) assimilation algo-
rithm which are embedded in the PyFilter toolbox. In Section 3, two 
super dust storm events occurred in the east Asia in 2021 spring are 
described as well as the ground-based PM10 observation data for 
assimilation and MODIS AOD for independent evaluation. The CAMS 
reanalysis data is also used to evaluate the performance. Section 4 
evaluates and discusses the assimilation analysis and forecasts. The 
benefit of localization is emphasized. Section 5 further concludes the 
highlight of our dust forecasting system and discuss the future work. 

2. Dust forecasting system 

2.1. System framework 

The system is mainly constructed by coupling the LOTOS-EUROS 
model with the Ensemble Kalman Filter (EnKF) and Localized 
Ensemble Kalman Filter (LEnKF) assimilation algorithm. The filter al-
gorithms are embedded in our self-developed Python-based toolbox, 
PyFilter v1.0, which is designed with various of sequential data assim-
ilation algorithms, e.g., EnKF, particle filter and three-dimensional 
(3DVar) variational method. An interface is designed in PyFilter for 
data transmission between the model and the assimilation, as well as the 
model initialization. The feature of ensemble model parallelization 
largely accelerates the computing speed. Different from some data- 
assimilation built-in systems, our toolbox is highly extendable and not 
bound with a specific numerical model or assimilation algorithm. Any 
other numerical model can be adapted into the PyFilter, and filter al-
gorithms can be updated conveniently. 

As shown in Fig. 1 is the diagram of the processes involved in the dust 
forecasting system. Initially, ensemble members (Ne) of model realiza-
tion forward with perturbed inputs, which are here the ensemble 
emissions as described in Section 2.2. When observations are available, 
assimilation analysis based on the EnKF and LEnKF algorithm will be 
performed to update the ensemble posteriori dust fields. The ensemble 
posteriors are then written back as the model restarting files for new 
forecasts. The assimilation analysis is repeated until the end of the 
simulation. 

2.2. LOTOS-EUROS forecast 

The LOTOS-EUROS model is a regional chemical transport model 
(CTM) originating from Long-Term Ozone Simulation (LOTOS) and 
European Operational Smog model (EUROS) in the Netherlands in the 
1980s which are developed by Netherlands Organization for Applied 
Scientific Research (TNO) and National Institute for Public Health and 
the Environment (RIVM) respectively and it is under continuous 
development by a consortium of institutes in the Netherlands during the 
past 10 years. LOTOS-EUROS has been widely used in many applications 
such as air pollution forecast including ozone (Curier et al., 2012), NO2 
(Skoulidou et al., 2021), dust storm emission inversion (Jin et al., 2018, 
2019a, 2019b, 2020, 2021, 2022) and source apportionment (Kranen-
burg et al., 2013; Timmermans et al., 2017). 

In this study, LOTOS-EUROS is utilized to simulate dust storms 
occurred in East Asia. The pure LOTOS-EUROS dust storm forecast/ 
simulation is referred to as the priori or control model run in this study. 
The simulation is carried out over a domain from 15◦N to 50◦N and 70◦E 
to 140◦E, with a resolution of 0.25◦ × 0.25◦. The model consists of eight 
vertical layers, with a top at 10 km. It has zero boundary conditions on 
the assumption that all dust aerosols are emitted in regional area and the 
external dust flows can be ignored. Dust aerosols are described using five 
bins with the geometric mean radius spanning from 0.01 to 10 μm. 
Physical processes included are the dust emission, deposition, advection, 
diffusion, and sedimentation. The dust forecast is driven by European 
Center for Medium-Ranged Weather Forecast (ECMWF) operational 
forecasts over 3–12 h, retrieved at a regular longitude/latitude grid 
resolution of about 7 km. An interface to the ECMWF output set is 
designed, which not only interpolates the default 3-h ECMWF short-term 
forecast meteorology to hour values, but also averages the forecast to fit 
the LOTOS-EUROS spatial resolutions. The model forecast is output at 
the interval of 1 h. 

The goal of the work is to estimate the dust concentration field with 
the available PM10 measurements, which will then lead to more accurate 
dust forecast. It is then necessary to define the uncertainty in the dust 
storm simulation. In this study, the main model error is attributed to the 
uncertainty in the dust emission parameterization. While other model 
processes like transport, deposition are uncertain as well. They are 
assumed to be less important than the emission parameterization. The 
priori dust aerosol emission scheme adopted in the LOTOS-EUROS is the 
windblown parameterization proposed by Zender et al. (2003). The 
ensemble emissions for initializing the ensemble model forecasts are 

Fig. 1. Flowchart of the data assimilation system scheme for dust storm fore-
cast. The blue oval means the input. The red hexagon denotes the output. The 
yellow rounded rectangle is the two main parts of the system. Parts in gray 
rounded rectangle are typical ensemble model forecast, while outside of them 
are the additional parts of ensemble data assimilation. 
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randomly generated following the a priori emission and an error 
covariance matrix describing the uncertainty of the emission parame-
terization scheme. Details concerning the ensemble dust emission gen-
eration could be found in the Supplement. 

2.3. Assimilation algorithm 

The Ensemble Kalman Filter (EnKF) provides a practical method to 
cope with high-dimensional atmospheric model dynamic by approxi-
mating the low-dimensional background error covariance matrix. It is 
adopted as the assimilation algorithm in this study. 

To begin with, ensemble individual xf
i which represents the dust 

concentration is generated by the LOTOS-EUROS model. The model 
operator M integrates from the analysis vector xa

i,t− 1 at the previous time 
step t-1. 

xf
i = M

(
xa

i,t− 1

)
(1)  

Xf =
[
xf

1, xf
2,⋯, xf

Ne
]

(2) 

xf is the average of the ensemble model forecast stored in Xf , and Xf
′

is the ensemble perturbation matrix. Ne is the total ensemble number. In 
this paper, it is assigned to be 32 for it gives a high freedom for repre-
senting the uncertainty in the dust field and is computational affordable. 
A larger ensemble member Ne > 32 is tested but the improvement is 
limited. Experiments about the sensitivity of assimilation analysis to the 
ensemble number is depicted in Fig. 2(a). The ensemble-based back-

ground covariance matrix Pf is calculated based on Xf
′

. 

xf =
1

Ne
∑Ne

i=1
xf

i (3)  

Xf
′

=
[
xf

1 − xf , xf
2 − xf ,⋯, xf

Ne − xf ] (4)  

Pf =
1

Ne − 1
∑Ne

i=1

(
xf

i − xf )( xf
i − xf )T

=
1

Ne − 1
Xf ′ Xf ′T (5) 

The factor K is usually referred to as the Kalman gain. H is the 
observation operator which maps model state variables into observation 
space. y is the observation vector storing the PM10 measurements, and O 
is the observation error covariance matrix that quantify the penalty of 
the simulation mismatching the observations y. However, PM10 con-
centration observations consists of not only dust aerosol, but also non- 
dust particles in practice. The non-dust fraction is removed before 
these PM10 data are assimilated. Description about the non-dust bias 
correction and definition of O are presented in Section 3.2. 

K = Pf H
T(

H Pf H
T
+ O

)− 1 (6)  

With all these, the a posteriori estimation individual xa
i can be updated 

via: 

xa
i = xf

i + K
(
y + εi − H xf

i
)

(7) 

εi refers to the sampling error. It is a random vector that subjects to 
the normal distribution. Its mean is zero and the covariance is adapted 
by the root of diagonal from O. Furthermore, in order to ‘cut-off’ the 
spurious correlation in the background covariance matrix Pf , a corre-
lation matrix L filled with local supports is introduced. Local support is a 
term meaning that the function is only non-zero in a local region and is 
zero elsewhere. The local support function is taken from set proposed in 
(Gaspari and Cohn, 1999) as: 

Si,j =
Di,j

Lthres
(8)  

Li,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 −
5
3
S2

i,j +
5
8
S3

i,j +
1
2

S4
i,j −

1
4
S5

i,j, Si,j < 1

−
2
3

S− 1
i,j + 4 − 5Si,j +

5
3
S2

i,j +
5
8

S3
i,j −

1
2
S4

i,j +
1
12

S5
i,j, 1 ≤ Si,j < 2

0, Si,j ≥ 2

(9)  

where Di,j refers to the distance between the two grid cells i and j, while 
Lthres represents the localization distance threshold. The individual 
element Li,j in localization matrix is constructed as Eq. (10). As Fig. 2(b) 
shows, the correlation declines as the distance increases and shorter 
distance threshold brings greater descent rate. It should be noted that 
when distance arrives at the distance threshold, the correlation between 
two grid cell i and j is not reduced to zero but keeps declining until the 
distance comes to the twice the distance threshold. 

With the localized correction matrix L, the localized Pf ,local is 
calculated through a Schur product: 

Pf ,local = Pf◦L (10) 

Subsequently, an updated localized Kalman gain is generated. Apply 
the localized Kalman gain Klocal to Eq. (6) and the localized posteriori 
can be retrieved. 

3. Dust storm events and observation data 

The test cases of these super dust storms are illustrated in Section 3.1, 
while PM10 concentration measurements for assimilation is described in 
Section 3.2. MODIS AOD product that is used to evaluate our dust storm 
forecast independently is presented in Section 3.3, and the operational 
CAMS reanalysis to evaluate our dust field analysis is introduced in 
Section 3.4. The timeline, the choice of ensemble number, localization 
threshold concerning the assimilation experiments were illustrated in 
Section 3.5. 

Fig. 2. Trend of average RMSEs from EnKF analysis with ensemble number ranging from 4 to 46 ensembles from 8:00 to 20:00 (at the interval of 1 h) 28th 2021 (a) 
and correlation distribution for different localization distance threshold Lthres (b). 
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3.1. Dust storm events 

Several super dust storms took place in March and April of 2021 in 
East Asia after an absence of two decades. This study focused on two of 
them which occurred around March 28 and April 15, respectively. The 
dust plumes were clearly observed by the ground-based air quality 
monitoring network. The maximum PM10 concentration detected by 
ground monitoring network has exceeded 9000 μg/m3 on 28th March 
and 4000 μg/m3 on 15th April. Fig. 3 shows the frequency density of 
ground-based hourly mean PM10 concentration in North Chinese Plain 
(NCP) and Fenwei Plain (FWP) from 27th March to 18th April when two 
dust storms occurred. The duration of two dust storms sustains 2–3 days. 
Both of them have a great impact on these regions (Xu et al., 2022). In 
this study, two dust storms events from March and April of 2021 will be 
investigated using the system we designed, and they will be referred to 
as DSE1 and DSE2 respectively in the following section. 

3.2. p.m.10 concentration observation for assimilation 

At the present, there is an air quality monitoring network consisting 
of more than 1600 ground-based stations covering all over China, part of 

which in the northern regions could be seen in Fig. 3(a). The real-time 
hourly PM10 concentration data is made public. These ground-based 
PM10 observation data, owing to its high temporary resolution and 
less uncertainty, has become an essential source of measurements on 
dust storms. 

However, the PM10 observation data can’t be utilized in data 
assimilation directly since it comprises not only dust itself, but also some 
other particles. Those particles are released from anthropogenic sources 
including vehicles and industry as well as natural sources including sea 
spray and volcanic eruption. One of the basic assumption of data 
assimilation is that the observation is unbiased, while in reality the 
biases in observation are often inevitable. The assimilation system will 
diverge rapidly if the PM10 concentration is assimilated directly into the 
system, especially when the majority of PM10 is non-dust particle. In our 
recent 4DVar-based dust emission inversion (Jin et al., 2022), the 
non-dust fraction of the total PM10 is simulated using a separate model, 
and the baseline-removed PM10 measurements is calculated. Details 
concerning the non-dust baseline removal could be found in Jin et al. 
(2022). Snapshots of the original PM10 and baseline-removed (BR) dust 
observations in DSE1 and DSE2 can be seen in Fig. 5(a and b) and Fig. 6 
(a and b), respectively. The baseline-removed measurements captured a 

Fig. 3. Distribution of the potential dust source over east Asia and ground-based air quality observing met work over northern China (a). Frequency density of 
ground-based hourly mean PM10 concentration in NCP (b) and FWP (c) during two dust storms. 
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clearer shape of the dust plume. For instance, the original PM10 obser-
vations in Fig. 5(a) indicated that the dust plume already arrived in 
Shandong Province (yellow scatters in red box ranging from 100 to 300 
μg/m3). They were identified as the non-dust aerosol, and Shandong 
Province is almost free of dust as shown in Fig. 5(b) which is consistent 
to our priori dust simulation plotted in Fig. 5(d). 

Concerning the observations error covariance O that required by the 
Kalman gain calculation in Eq. (6), it is defined to be a diagonal matrix 
with all observations are assumed to be independent. Meanwhile, the 
uncertainty (square root of the individual diagonal element in O) of the 
pre-processed PM10 measurements for assimilation is assumed to be 
joint due to uncertainty in the PM10 data and the non-dust PM10 bias 
correction. We used the empirical Eq. (11) to quantify the representation 
errors σPM in PM10 following our previous choice in Jin et al. (2022). 

σPM
i =

{ 200, yi ≤ 200
(yi − 200) × 0.1 + 200, yi > 200

(11) 

We chose an empirical value of 200 μg/m3 as the minimum of the 
σPM. This is mainly to prevent the posteriori from getting too close to the 
low-value PM10 observations and hence being model divergent. Details 
about the errors in observation error covariance matrix O can be found 
in Supporting Information. 

3.3. MODIS AOD for independent evaluation 

The Moderate Resolution Imaging Spectroradiometer (MODIS), 
launched onboard the Terra and the Aqua satellite, is one of the 
fundamental instruments of NASA Earth Observing System (EOS) and 
produce reflectance at multiple wavelengths (Xie et al., 2017). Satellite 
measurements have advantage in coverage over ground-based mea-
surements while it also has greater uncertainties. In this study, the 
MODIS Deep Blue AOD products are used to compare AOD forecast from 
the priori and posteriori simulation. Note that these AOD could be used 
as part of the observations for assimilation to have the prediction as 
accurate as possible in practice. But they are used as the independent 
measurements for the validation of our dust forecasting system. Simi-
larly, instead of using the original MODIS AOD that contains both dust 
and non-dust contribution, it is the baseline-removed AOD used for 
accurately representing the dust load, and the pre-processing method is 
described in Supplementary Material Text S3. 

3.4. CAMS reanalysis for comparison 

The Copernicus Atmosphere Monitoring Service (CAMS) is a global 
reanalysis dataset produced by European Center for Medium-Range 

Weather Forecasts (ECMWF) (Inness et al., 2019). It provides 
three-dimensional simulations of the atmospheric composition obtained 
by combining a global atmospheric chemistry model and observations. 
Data assimilation is also used as the principle to produce the best esti-
mate of the state of the atmosphere. It has global coverage, horizontal 
resolution of 0.75◦ × 0.75◦, 60 model levels and temporal resolution of 
3-hourly. In this paper, PM10 on surface level from the CAMS product is 
used as a benchmark to evaluate the assimilation analysis performance 
of our PyFilter system. Note that CAMS provides the full coarse aerosol 
simulation instead of the dust product solely, therefore, it is directly 
compared to the raw PM10 observation records. 

3.5. Assimilation experiments 

To evaluate the capability of the dust forecasting system, data 
assimilation experiments on the DSE1 and DSE2 are carried out. Fig. 4(a) 
shows the timeline of the sequential assimilation designed for DSE1 in 
this study. Dust emissions occurred at the start of the simulation win-
dow, 26th March, when the plumes were lifted high to be carried 
southward to the northern China. The assimilation is not performed 
until 28th March, as the dust plume is not observed by ground-based 
monitoring network before. The assimilation analysis is then per-
formed at an interval of 3 h starting from 8:00 to 20:00 on 28th of 
March. The posteriori dust field would be used as the initial condition for 
the new forecast. The assimilation analysis is terminated when the 
average dust load from BR-PM10 observations is reduced to a low level 
around 150 μg/m3. The baseline-removed PM10 concentration obser-
vations described in Section 3.2 are assimilated for the dust state field 
estimation in each of the analysis. The updated posteriors are then used 
to forward the model for short-term forecast with a horizon of 1–6 h. For 
an operational dust forecast system in practise, the assimilation could be 
conducted every hour, therefore all the PM10 data would be assimilated. 
Similar timeline of assimilation sets for DSE2 could be found in Fig. 4(b). 

To further explore the effectiveness of localization on the analysis 
and forecasts, a set of experiments with different localization distance 
threshold are performed. Note that the control model here represents the 
average of ensemble simulation without assimilating any observation. It 
is severed as a benchmark of the pure model-based forecast for the 
comparison against the assimilation-based forecast without localization 
or using distance threshold Lthres = 100, 300, 500, 700 and 1000 km 
(referred to as EnKF, L100, L300, L500, L700, L1000 respectively). The 
metric, Root-Mean Square Error (RMSE) and Normalized Mean Error 
(NME), is introduced here for evaluating the accuracy of these simula-
tions against the baseline-removed dust observation (PM10 and AOD). In 
the calculation of RMSE and NME, the mode simulation is compared to 
the observation in the observational space using the nearest search 

Fig. 4. Sequential assimilation set for DSE1 (a) and DSE2 (b). The assimilation analysis (vertical dash line) is performed at the interval of 3 h from 8:00 to 20:00 on 
March 28th in DSE1, and from 8:00 to 20:00 on April 15th in DSE2. The rolling model forecast (red solid line) is made with a horizon of 12 h based on the each of the 
assimilation analysis. 
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method. 

4. Results and discussions 

Section 4.1 presented the evaluation of our assimilation analysis, as 
well as the comparison against the reanalysis product from CAMS. 
Section 4.2 evaluated the performance of our dust storm forecast and 
effectiveness of the localization. In Section 4.3, the dust storm forecasts 
are further evaluated using the independent MODIS AOD 
measurements. 

4.1. Assimilation analysis 

Fig. 5 is the original PM10 concentration observations (panel a), 
baseline-removed PM10 concentration observation (panel b), surface 
PM10 concentration simulation from CAMS reanalysis dataset (panel c), 
surface dust concentration forecast from the pure model (panel d), in-
crements from the EnKF analysis (panel e) and EnKF with different 
localization schemes (panel f–j) at 8:00 on 28th of March, China stan-
dard time (CST). Note that increments from assimilation analysis is 
obtained by calculating the difference between assimilation analysis and 
pure model simulation. The first analysis for DSE1 is implemented at 
8:00. At this instance, the model simulated a clear dust plume and it is 

Fig. 5. Spatial distribution of ground-based raw PM10 (a), BR-PM10 concentration observations (b), reanalysis data of PM10 from CAMS at the surface level (c), the 
surface dust concentration (SDC) simulation from control model (d), increments from the posteriori SDC updated using EnKF (assimilation analysis field minus 
control model run, figures below are the same) (e), using LEnKF with Lthres = 100 km (f), using LEnKF with Lthres = 300 km (g), using LEnKF with Lthres = 500 km (h), 
using LEnKF with Lthres = 700 km (i) and using LEnKF with Lthres = 1000 km (j) at 08:00, 28th March 2021 (CST). BR-PM10: baseline-removed PM10. 
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consistent with the observations to some extent. However, there is 
plenty of overestimation from model in south-east front of the dust 
plume. It results in an RMSE as high as 676 μg/m3 and NME of 142.1%. 
By assimilating BR-PM10 data (in panel b) using the EnKF (without 
localization), the dust plume simulations are corrected to a great extent. 
The overestimation in north-east front is greatly reduced with in-
crements greater than − 1000 μg/m3 and part of dust load in north-west 
of the front is increased which better fits the observations with the RMSE 
drops to less than 300 μg/m3 and NME to 64.3%. It indicates that our 
assimilation analysis is effective in dust field estimation. The posteriori 
dust field at the moment from the assimilation analysis can be seen in 
Fig. 5(e–j). The dust cloud in the southern Inner Mongolia, FWP and NCP 

is attenuated in all posteriors. The west part of the plume in Xinjiang 
remains consistent due to the lack of measurements available there. 

In terms of RMSE and NME, localization is found to be effective in 
improving the assimilation analysis. The RMSE is 273 μg/m3 and NME is 
64.3% when the pure EnKF is employed, and it is further reduced to 201, 
221.8, 234.1, 240.4, 246.3 μg/m3 and 51.2%, 55.4%, 56.5%, 57.0%, 
57.7% when the localization distance threshold Lthres is set to as 100, 
300, 500, 700 and 1000 km respectively. Among them, L100 seems to 
have the largest capacity of resolving the measurements. However, there 
is the danger of breaking the model consistence of using such a low 
threshold, and hence bring worse prediction as will be discussed in 
Section 4.2. Meanwhile, it is also found that with longer distance 

Fig. 6. Spatial distribution of ground-based raw PM10 (a), BR-PM10 concentration observations (b), reanalysis data of PM10 from CAMS at the surface level (c), the 
surface dust concentration (SDC) simulation from control model (d), increments from the posteriori SDC updated using EnKF (assimilation analysis field minus 
control model run, figures below are the same) (e), using LEnKF with Lthres = 100 km (f), using LEnKF with Lthres = 300 km (g), using LEnKF with Lthres = 500 km (h), 
using LEnKF with Lthres = 700 km (i) and using LEnKF with Lthres = 1000 km (j) at 08:00, 15th April 2021 (CST). BR-PM10: baseline-removed PM10. 
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threshold, increments from assimilation analysis have a greater 
coverage and is closer to the pure EnKF analysis. For example, through 
comparison between EnKF (panel e) and L1000 (panel j), we can see a 
quite similar increment pattern. It is in accord with the localization 
principle, which is a long distance threshold can reserve more infor-
mation about correlation in ensembles and thus resolve more distant 
observations. 

Compared to dust simulation shown in Fig. 5(d–j), the CAMS rean-
alysis reproduced a broader coverage of high-polluted full-aerosol PM10 
field. It resulted in better performance with RMSE of 385.7 μg/m3 and 
NME of 105.5% than the pure LOTOS-EUROS model prediction. How-
ever, it didn’t capture the main dust plume and underestimated the in-
tensity of the dust as can be seen in comparison between panel (a) and 
panel (c). Compared to the CAMS reanalysis, all of assimilation analysis 
show a lower RMSE and NME. 

Snapshots of original PM10, BR-PM10, CAMS reanalysis of PM10, the 
control model and increments from posteriori dust load simulation for 
DSE2 are shown in Fig. 6. Only a small part of dust plume can be 
observed by the ground-based monitoring network at 8:00 15th April as 
shown in panel (b). While the control model run in panel (d) indicated 
that a larger piece of dust cloud has already arrived in the FWP in China. 
After first assimilation analysis at 8:00 15th April, an improved dust 
field is obtained. The west stretch of the dust plume remains almost the 
same owing to the scarcity of observations nearby. The north of the 
plume is strengthened. The south plume is greatly reduced to better fit 
the observations as there is an increment over − 2000 μg/m3 in south of 
the dust plume. The EnKF analysis effectively resolve the few PM10 
concentration measurements that contains valuable dust information, 
and therefore the RMSE is reduced sharply from over 700 μg/m3 down 
to less than 100 μg/m3 and NME is reduced from over 400% to less than 
80% in all assimilation sets. Differences between localization (panel f–j) 
and non-localization (panel d) are also quite small considering the RMSE 
and NME. However, in areas where observations are unavailable, there 
are differences clearly depicted. For example, distribution of increments 
from L100 in panel (f) is greatly different from the EnKF in panel (e). 
Much too short distance threshold limits the capability of assimilation 
algorithm to resolve the observations far away. So the north dust plume 
remains still. Similar for DSE2, analysis with longer distance threshold 
produces a comparable posteriori to EnKF especially for L1000. Impact 
on the following forecast will be examined. In addition, CAMS reanalysis 
showed a relatively low RMSE (142.1 μg/m3) and NME (120.3%) 
compared to the priori simulation. But it outperforms far worse than our 
assimilation analysis. 

4.2. Forecasting skill 

The experiments discussed so far focus on the evaluation of the 
posteriori using the EnKF analysis, which would be used as the initial 
condition for dust forecasts. An overall validation of the short-term dust 
forecast for these two events is then carried out here. 

As shown in Fig. 7 is the time series of RMSE and NME calculated 
from the dust forecast restarted by EnKF and LEnKF analysis during 8:00 
to 20:00 in DSE1 and DSE2. In DSE1, as shown in panel (a) and panel (c), 
the forecast from the EnKF (blue dash line) is steadily slightly higher 
than the forecast where localization is applied. It indicates that the 
localization can improve the prediction quality effectively. Meanwhile, 
the optimal choice for improving the prediction is obtained when Lthres is 
set from 300 to 500 km. It is because that a longer localization distance 
threshold would be less efficient in removing the spurious spatial 
correction. While localized EnKF (Lthres = 100 km) did result in the best 
performance in the posteriori analysis, it only estimated the dust field 
within 200 km (r = 2 Lthres) and would not nudge the dust states beyond 
this range. It can be best seen from the green line in panel (a) and panel 
(c). Although the L100 reaches the lowest RMSE (201 μg/m3) and NME 
(51.2%) at 8:00, but the forecast error rapidly grows and is even worse 
than the forecast from the pure EnKF in the following instances. Similar 
pattern can also be seen in Fig. S1 which is the time series of the dust 
forecast starting from subsequent assimilation analysis. 

In DSE2, the diversion of L100 is much more significant than that of 
the DSE1 as shown in Fig. 7(b and d) and Fig. S2. This is mainly because 
that only a small part of the whole dust plume was observed by the PM10 
monitoring network at 8:00 and 11:00. The insufficient observations 
with L100 only estimated the dust field with a limited range, while the 
main dust plume keeps unchanged. Different from DSE1, diversion, 
though not that significant, also occurs in L300 at 8:00 and the RMSEs of 
L300 forecasts are slightly higher than other sets (L500, L700) in the 
following time window. Our forecasting system still produces stable 
prediction using EnKF with Lthres = 500 and 700 km as shown in Fig. 7. 

Fig. 8 is the time series of hourly RMSE of the pure model forecast 
(light blue dash line) and improvement on 3-h RMSE using the 
assimilation-based forecast (histogram) starting from 5 assimilation 
time points (8:00, 11:00, 14:00, 17:00 and 20:00) and from 8:00 to 
20:00 in DSE1 and DSE2. Note that the left axis represents the relative 
RMSE improvements with respect to the pure model run. The higher 
value represents the better performance. Evaluation results using NME 
are also shown in Fig. S3. This figure clearly shows the added value of 
assimilation compared to pure model run and impact of Lthres on LEnKF. 
In general, our assimilation-based forecasting system outperforms the 
pure model forecast in varying degrees over the whole tested window. 

Fig. 7. Time series of RMSE and NME calculated from the dust forecast restarted by EnKF and LEnKF (Lthres = 100, 300, 500, 700, 1000 km) analysis during 8:00 to 
20:00 in DSE1 (a and c) and DSE2 (b and d). 
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In DSE1, the RMSE of the LOTOS-EUROS forecast (light blue dash 
line) stayed at a relative high level constantly, RMSE ranging from 300 
to over 600 μg/m3 and NME ranging from 90% to 140%. Forwarded 
with the assimilation analysis, the RMSE is reduced remarkably and 
remains less than 300 μg/m3 and NME is reduced to around 70%. 
Relative improvements using assimilation are around 30%. Most of the 
LEnKF-based forecast outperforms the EnKF-based forecast. The greatest 
reduction is in initial assimilation analysis at 8:00 given the maximum 
model RMSE. The L100 helps the least in the forecast from the first 
assimilation which can also be seen in Fig. 7(a). While in the following 
time points, L100 produces relatively high contribution to the forecast. 
It is caused by the high-frequency assimilation that corrects the cumu-
lative errors. Among all experiment sets, L500 obtains the best perfor-
mance in 3 out of 5 time points. 

In DSE2, our forecasting system outperforms the pure model forecast 
to a considerable extent over the time window. The RMSE drops sharply 
from over 700 μg/m3 (control model) to less than 100 μg/m3 and re-
mains stable around 200 μg/m3. The NME drops from over 400% to less 
than 100%. Similar to DSE1, L100 in DSE2 achieves the worst perfor-
mance on the first assimilation-based forecast. In fact, it is the worst one 
throughout the five time points. In contrast, all experiment sets reach 
comparable levels considering the RMSE and NME, which indicates that 
the sensitivity of forecast in DSE2 to Lthres is not very high. The locali-
zation only helps a little in this case. In general, if localization is enabled, 
Lthres between 500 and 700 km can be the best choice that wouldn’t 
degrade the forecast. In both cases, localized EnKF with Lthres = 100 km 
would lead to a divergent model though it results in the best assimilation 
analysis. It indicates that it reaches the local optimum instead of the 
global one. L300 also has the risk of falling into a divergent model at 
8:00 which can also be seen in Fig. 7(b). In fact, the localization aims to 
reduce the spurious correlation generated by the limited ensemble 
model simulation. If the localization distance threshold is too short, 
observations would only be used to tune the model simulation at the 
very local grids around the observations, while the whole simulated dust 
plume could not be fully estimated. It will break model consistency and 

thus the forecast goes divergent rapidly. 
Conclusively, both of the EnKF and LEnKF would help in improving 

the forecast skill and the latter is steadily better than the former in DSE1. 
In DSE2, assimilation-based forecast is not improved a lot when longer 
Lthres is applied. Hence, the choice of Lthres can be case-independent. 
Meanwhile, with a high-frequency data assimilation and rolling fore-
cast, the possible divergence of model can be alleviated. For our LEnKF 
for dust storm forecasting, Lthres around 500 km is shown to be the 
optimal choice that can improve the forecast to some degree and avoid 
the model divergence. 

4.3. Forecast evaluation using AOD 

To further evaluate our dust forecast system, the prediction is also 
compared to the MODIS Deep Blue AOD product described in Section 
3.3. Fig. 9 shows snapshots of the baseline-removed MODIS AOD and the 
AOD prediction from the control model, EnKF and LEnKF (Lthres = 500 
km) at 11:00 28th March. As is clearly shown in MODIS AOD in panel 
(a), the dust load is concentrated in the northeast China and it stretches 
to west. The priori model approximately matches the shape of MODIS 
AOD but overestimates the AOD in the front of the dust plume. Mean-
while, less-severe dust plume was observed in the Heilongjiang and east 
China (in blue box) from the MODIS AOD. However, the priori model 
doesn’t reproduce this pattern as shown in Fig. 9(b), and the plume there 
is neither captured by the EnKF and L300 simulation. This inconsistence 
may arise from the MODIS AOD retrieval error, and this part of data is 
not successfully excluded by our data quality control described in Jin 
et al. (2022). The strength of AOD from EnKF and LEnKF are reduced 
after assimilation at 8:00 which is in better harmony with the MODIS 
AOD compared to the priori model, and the RMSE drops from 0.938 to 
0.752 and 0.713, respectively. 

Another snapshot of MODIS AOD, the a priori and the posteriori AOD 
simulation during the DSE2 is shown Fig. 10. The AOD measurements in 
panel (a) indicated that the dust plume is concentrated in the Inner 
Mongolia of China. The AOD simulation of the control model in panel 

Fig. 8. Relative RMSE improvement of the 3-h assimilation-based forecast with respect to pure model forecast starting from 5 assimilation time points (8:00, 11:00, 
14:00, 17:00 and 20:00) and time series of hourly RMSE from pure model forecast (light blue dash line) during 8:00 to 20:00 in DSE1 (a) and DSE2 (b). The left axis 
calculates the improvement ratio and the right represents the RMSE of the pure model forecast. 
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(b) has a more extent coverage and greater intensity than the MODIS 
AOD. The assimilation-based prediction in panel (c-d) presents less- 
severe AODs that stretches to the south, and the RMSE drops from 
1.489 to 0.75 and 0.714 respectively. 

5. Conclusions 

Super dust storms reoccurred in East Asia in 2021 spring after an 
absence of two decades, and casted great health damages and property 
losses. High-quality dust storm forecasts are therefore in demand for 
reducing the adverse impacts. A dust forecasting system has been 
developed in this study through combining a chemical transport model 
LOTOS-EUROS and EnKF/LEnKF data assimilation algorithms. Mea-
surements are assimilated when they are available to estimate the dust 
state, which are then used as the initial condition for new forecast. The 
system was tested in the 2021 super dust storms, and the ground-based 

PM10 concentration measurements covering all over the China were 
assimilated. Sequential assimilation tests show that our system can 
produce a promising dust forecast than pure model-based forecast. Main 
features of the dust plume were reproduced, and the forecast agreed 
with the PM10 concentration data well. Parts of dust simulation error 
remained, which is because our ensemble members cannot fully repre-
sent the position uncertain in the dust transport, and therefore is unable 
to resolve all the observations. Independent evaluations are carried out, 
our assimilation analysis of dust concentration field is validated to 
outperform the operational CAMS product. Besides, the improvements 
on dust prediction were also validated through a comparison against the 
independent MODIS Deep Blue AODs. 

Experiments were performed to compare EnKF and LEnKF, and to 
explore the sensitivities of dust forecasting to the localization distance 
threshold in LEnKF. In terms of the assimilation analysis, LEnKF ach-
ieved lower RMSE than the EnKF steadily in DSE1. The best performance 

Fig. 9. MODIS Deep Blue AOD at 550 nm (a), control model AOD (b), predicted AOD of EnKF (c) and L500 (d) (model restarted and run from 8:00 after the initial 
assimilation at 8:00) on 11:00 28th March 2021 (CST). 

Fig. 10. MODIS Deep Blue AOD at 550 nm (a), control model AOD (b), predicted AOD of EnKF (c) and L500 (d) (model restarted and run from 8:00 after the initial 
assimilation at 8:00) on 11:00 15th April 2021 (CST). 
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was obtained when a shortest localization distance threshold Lthres =

100 km was used. It is because the LEnKF with the shortest-distance 
localization has the largest freedom to resolve the measurements. It is 
also found that with a longer distance threshold, LEnKF can produce a 
similar result compared to EnKF. When we come to the forecasting skill, 
however, it was found that even though L100 achieves best performance 
in assimilation analysis, it would break the model consistency. The 
forecast onward from the estimated field diverges rapidly. Meanwhile, 
with a high-frequency assimilation, the errors arise from much too short 
distance threshold can be alleviated to some degree. On the other hand, 
forecast with a long localization distance is also unsatisfying as it is less 
efficient in removing the spurious spatial correction especially in DSE1. 
Sensitivity of forecast in DSE2 to distance threshold is not as high as in 
DSE1. While much too short Lthres can still degrade the forecast. If 
localization is applied, considering both cases, distance threshold of 
around 500 km is proved to be the optimal choice that can resolve the 
observations and avoid the model divergence. 
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Data assimilation in atmospheric chemistry models: current status and future 
prospects for coupled chemistry meteorology models. Atmos. Chem. Phys. 15 (10), 
5325–5358. https://doi.org/10.5194/acp-15-5325-2015. 

Burgers, G., Jan van Leeuwen, P., Evensen, G., 1998. Analysis scheme in the ensemble 
Kalman filter. Mon. Weather Rev. 126 (6), 1719–1724. https://doi.org/10.1175/ 
1520-0493(1998)126<1719:ASITEK>2.0.CO;2. 

Chen, L., Walsh, M., 2021. Vast Sandstorms Expose Mongolia’s Long-Ignored Ecological 
Crisis. Retrieved from. https://asia.nikkei.com/Spotlight/Caixin/Vast-sandstorms-e 
xpose-Mongolia-s-long-ignored-ecological-crisis. 

Corazza, M., Bergamaschi, P., Vermeulen, A.T., Aalto, T., Haszpra, L., Meinhardt, F., 
et al., 2011. Inverse modelling of European N2O emissions: assimilating observations 
from different networks. Atmos. Chem. Phys. 11 (5), 2381–2398. https://doi.org/ 
10.5194/acp-11-2381-2011. 

Curier, R.L., Timmermans, R., Calabretta-Jongen, S., Eskes, H., Segers, A., Swart, D., 
Schaap, M., 2012. Improving ozone forecasts over Europe by synergistic use of the 

LOTOS-EUROS chemical transport model and in-situ measurements. Atmos. Environ. 
60, 217–226. https://doi.org/10.1016/j.atmosenv.2012.06.017. 

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic 
model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99 
(C5), 10143 https://doi.org/10.1029/94JC00572. 

Filonchyk, M., 2022. Characteristics of the severe March 2021 Gobi Desert dust storm 
and its impact on air pollution in China. Chemosphere 287, 132219. https://doi.org/ 
10.1016/j.chemosphere.2021.132219. 

Gaspari, G., Cohn, S.E., 1999. Construction of correlation functions in two and three 
dimensions. Q. J. R. Meteorol. Soc. 125 (554), 723–757. https://doi.org/10.1002/ 
qj.49712555417. 

Gong, S.L., Zhang, X.Y., 2008. CUACE/Dust – an integrated system of observation and 
modeling systems for operational dust forecasting in Asia. Atmos. Chem. Phys. 8 (9), 
2333–2340. https://doi.org/10.5194/acp-8-2333-2008. 

Guo, H., Gu, X., Ma, G., Shi, S., Wang, W., Zuo, X., Zhang, X., 2019. Spatial and temporal 
variations of air quality and six air pollutants in China during 2015–2017. Sci. Rep. 9 
(1), 15201 https://doi.org/10.1038/s41598-019-50655-6. 

Guo, L., Fan, B., Zhang, F., Jin, Z., Lin, H., 2018. The clustering of severe dust storm 
occurrence in China from 1958 to 2007. J. Geophys. Res. Atmos. 123 (15), 
8035–8046. https://doi.org/10.1029/2018JD029042. 

Hamill, T.M., Whitaker, J.S., Snyder, C., 2001. Distance-dependent filtering of 
background error covariance estimates in an ensemble Kalman filter. Mon. Weather 
Rev. 129 (11), 2776–2790. https://doi.org/10.1175/1520-0493(2001)129<2776: 
DDFOBE>2.0.CO;2. 

Han, J., Dai, H., Gu, Z., 2021. Sandstorms and desertification in Mongolia, an example of 
future climate events: a review. Environ. Chem. Lett. 19 (6), 4063–4073. https://doi. 
org/10.1007/s10311-021-01285-w. 

Houtekamer, P.L., Mitchell, H.L., 2001. A sequential ensemble Kalman filter for 
atmospheric data assimilation. Mon. Weather Rev. 129 (1), 123–137. https://doi. 
org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2. 

Houtekamer, P.L., Zhang, F., 2016. Review of the ensemble Kalman filter for atmospheric 
data assimilation. Mon. Weather Rev. 144 (12), 4489–4532. https://doi.org/ 
10.1175/MWR-D-15-0440.1. 

Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., 
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