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Abstract
Atmospheric ammonia has been hazardous to the environment and human health for decades.
Current inventories are usually constructed in a bottom-up manner and subject to uncertainties
and incapable of reproducing the spatiotemporal characteristics of ammonia emission. Satellite
measurements, for example, Infrared Atmospheric Sounder Interferometer (IASI) and Cross-Track
Infrared Sounder, which provide global coverage of ammonia distribution, have gained popularity
in ammonia emission estimation through data assimilation methods. However, satellite-based
emission inversion studies on China are limited. In this study, we propose a four-dimensional
ensemble variational-based ammonia emission inversion system to optimize ammonia emissions
in China. It was developed by assimilating the IASI ammonia retrievals onboard Meteorological
Operational satellite A and B into a chemical transport model Goddard Earth Observing System
Chemical model (GEOS-Chem). Monthly inversion experiments were conducted in April, July,
and October 2016 to test the performance. The inversion result indicated that the prior inventory
from the MEIC model captured ammonia spreads in general; however, it heterogeneously
underrated the emission intensity. The increments obtained in the assimilation were as high as
50% in North, East, and Northwest China. The posterior emission inventory presented a regional
emission flux consistent with relevant studies. Driven by the optimized source estimate,
GEOS-Chem provides superior results than using the prior in the evaluation of the assimilated
IASI retrievals and the surface ammonia concentration measured by the ground-based Ammonia
Monitoring Network in China.

1. Introduction

As an abundant nitrogen species, atmospheric
ammonia (NH3) is highly reactive and readily reacts
with acids, such as H2SO4 and HNO3. The formation
of secondary fine particulate matter (PM2.5) poses
significant threat to public health (Huang et al 2014)
and plays a vital role in global climate change (Myhre
et al 2013). In addition, excess deposition of reactive

nitrogen is associated with soil acidification, eutroph-
ication (Krupa 2003), and ecosystem imbalance
(Hernández et al 2016). Atmospheric NH3 is primar-
ily attributed to agricultural, industrial, and traffic
sources (Li et al 2021). As a country with an enorm-
ous livestock population and tremendous nitrogen
fertilizer and fossil fuel consumption, China has been
affected by the high-level atmospheric NH3 over the
past two decades (Huang et al 2012, Pan et al 2018).
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Over the last decade, significant efforts have
been made to quantify the spatiotemporal distribu-
tion of ammonia sources and develop global emis-
sion inventories, such as the Emissions Database for
Global Atmospheric Research (Crippa et al 2018), the
Community Emissions Data System (CEDS) (Hoesly
et al 2018), and regional NH3 inventories over China
(Huang et al 2012, Kang et al 2016, Xu et al 2016,
Zhou et al 2016, Zhang et al 2018). Driven by
these ammonia source datasets, various numerical
chemical transport models, such as Goddard Earth
Observing System Chemical model (GEOS-Chem)
(Walker et al 2012) and WRF-Chem (Li et al 2021),
have been used to reproduce the ammonia life cycles
of chemical reactions, transport, and wet/dry sinks.
These models not only help to better quantify the
environmental impact of atmospheric ammonia but
are also essential tools for evaluating future ammonia
emission reduction strategies. However, large uncer-
tainties are present in these bottom-up ammonia
emission sources (Xu et al 2019). As reported by
Zhang et al (2018), the difference between the current
estimates of agricultural ammonia emissions inChina
can be as high as a factor of 2. Take year of 2008 for
instance, the total anthropogenic NH3 emissions over
China ranged from 8.4 to 15.0 Tg in different estim-
ates (Kurokawa et al 2013, Paulot et al 2014, Xu et al
2016). The large discrepancies mislead the modeling
results and, consequently, our understanding of their
environmental impact.

Continuous advances in sensor techniques have
made the large-scale observation of ammonia feas-
ible. Limited ground-based observations are available
formeasuring ammonia levels in China. An ammonia
monitoring network covering 53 sites was developed
by Pan et al (2018). However, the observational cam-
paign only lasted for 1 year. In contrast, satellite-
based remote sensing instruments, such as the tro-
pospheric emission spectrometer (TES) (Beer et al
2008), crosstrack infrared sounder (CrIS) (Shephard
and Cady-Pereira 2015), and infrared atmospheric
sounder interferometers (IASI) (Clarisse et al 2009),
have gained popularity and have been used along-
side numerical models to analyze ammonia (Ge et al
2020). Despite their significant roles in characteriz-
ing ammonia, these measurements are not sufficient
to provide complete insight into ammonia. This is
because these observations do not reflect the emis-
sion intensity directly, only report vertically integ-
rated quantities (satellite-based data) or cover a very
limited area (surface observing network).

Instead of exploring atmospheric ammonia cycles
with simulation models or observations alone, data
assimilation was used to combine them to fill in
observation and simulation gaps (Kalnay 2002). Data
assimilation could nudge parameters or states with
an allowed range, such that the simulation better

fit the measurements. For ammonia application,
assimilation is usually performed to calculate the
most likely emission field, and this top-downmethod
is referred to as ammonia emission inversion. Atmo-
spheric ammonia emission inversion has recently
attracted considerable attention worldwide. For
instance, Cao et al (2020, 2022) conducted a 4DVar-
based inversion using CrIS retrieval data and the
GEOS-Chemmodel to optimize the monthly ammo-
nia emission inventories in Europe and the US. CrIS
measurements were also assimilated to constrain the
ammonia source inventory over North America in
Sitwell et al (2022) and Europe in van der Graaf et al
(2022). The IASI ammonia column concentrations
were used by Chen et al (2021) for the US ammonia
emission estimation.

However, studies on ammonia emission inver-
sion focusing on China are limited. To the best of
our knowledge, only three studies (Paulot et al 2014,
Zhang et al 2018, Kong et al 2019) have been con-
ducted to date. In Paulot et al (2014), indirect meas-
urements and nitrogen deposition from very few
monitoring stations (30 sites) were assimilated to
update ammonia emissions in Asia from 2005 to
2008. Recently, Kong et al (2019) used ground-based
ammonia concentrations from the Ammonia Mon-
itoring Network in China (Amon-China, 53 sites)
(Pan et al 2018) and updated the Chinese ammo-
nia emission inventory in 2016. Nevertheless, both
observational networks had limited sites; hence, they
could not fully capture the high spatial variability
of ammonia throughout China. Additionally, their
observational campaign was conducted over a short
period and was no longer in operation, and therefore
helped little in the temporal profile of annual ammo-
nia variation. The first satellite observations of tro-
pospheric ammonia (TES) were assimilated by Zhang
et al (2018). Their emission inversion was only con-
ducted to estimate ammonia emissions in China in
2008. Launched in 2004 and ending its mission in
2018, the TES mission had much less spatial cover-
age than the IASI, especially in its later years (Guo
et al 2021). New IASI and CrIS instruments, which
have better spatial coverage and higher resolution, are
recommended for characterizing global or regional
ammonia source distributions (Zhang et al 2018).

Compared to the nitrogen deposition and con-
centrationmeasurements from limited ground-based
observation sites and the coarse-resolution TES satel-
lite ammonia retrievals, the identical IASI instru-
ments onboard Metop-A (operated from 2008 to
2018), Metop-B (from 2012), and Metop-C (from
2018) satellites provide better spatiotemporal cover-
age and higher resolution of ammonia in the past dec-
ade. In this study, we introduced an inversion sys-
tem for long-term ammonia emission estimation in
China. It was developed by feeding IASI ammonia
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measurements into the GEOS-Chem model using
a four-dimensional ensemble variational (4DEnVar)
data assimilation algorithm. The emission inversion
system was first tested in 2016 for this study, as its
effectiveness could be evaluated with emission results
reported in relevant studies (Kong et al 2019, Li et al
2021) and the independent ammonia concentration
measurements collected in Pan et al (2018), whereas
the long-term annual/seasonal variation of ammo-
nia emissions will be explored in our next work.
CrIS instrument also provides high-quality ammonia
observations over the past decades, and the assimil-
ation of its product will be considered in our future
study as well. The proposed inversion system will not
only promote the development of ammonia emission
inventories, but also improve our understanding of
atmospheric ammonia life cycles in China and help
obtain a better assessment of their environmental
influences.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the GEOS–Chem chem-
ical transport model for ammonia simulations. The
IASI ammonia total columnmeasurements for assim-
ilation and ammonia surface concentration for inde-
pendent evaluation are also illustrated. The ammo-
nia emission inversion system was designed, and the
assimilation and local analysis algorithms are dis-
cussed in section 3. The posterior emission field, the
simulated total ammonia column and surface con-
centration are evaluated and discussed in section 4.
Section 5 summarizes the conclusion and the added
value of the top-down inversionmethod to resolve the
uncertainty in the emission inventory and introduces
our future work.

2. Ammonia simulation and observation

2.1. GEOS-Chemmodel
To simulate atmospheric ammonia in the modelling
domain shown in figure 1, we ran a nested grid sim-
ulation in GEOS-Chem model v13.3.3. Global sim-
ulations with a horizontal resolution of 2◦ latitude
by 2.5◦ longitude as the boundary condition were
taken every 3 h. The nested domain (72◦–136◦ E,
17.5◦–54◦ N) has a horizontal resolution of 0.5◦ lat-
itude by 0.625◦ longitude and 47 vertical layers. The
reanalysis meteorological field to drive GEOS-Chem
in this work was from the Modern-Era Retrospect-
ive Analysis for Research and Applications, version 2
(MERRA-2) meteorological field (Gelaro et al 2017).
Each simulation had a spin-up period of 6 months.

GEOS-Chem has a fully coupled aerosol-ozone-
NOx-hydrocarbon chemistry representation (Park
et al 2004). The wet deposition scheme for soluble
aerosols and gases was described in Liu et al (2001)
and the dry deposition scheme was described in
Zhang et al (2001). In the model configuration, the

time steps for dynamics and chemistry were 600 and
1200 s, respectively.

2.2. Prior anthropogenic NH3 emission inventory
The prior NH3 emission estimates used to onward
GEOS-Chem were from the Multiresolution Emis-
sion Inventory for China (MEIC, www.meicmodel.
org, last access: August 1, 2022) in the base year of
2016. MEIC is the most popular model for tracking
anthropogenic emission in China. Besides the ammo-
nia, MEIC provides other aerosol and gas pollutant
emission for GEOS-Chem. In addition to the MEIC,
ammonia inventory such as from Kong et al (2019)
and Li et al (2021) could be served as the prior altern-
atively, which are actually in better harmony with our
posterior as will be discussed in section 4.1. However,
inputs of the continuous prior emission inventories
such as from the MEIC model are required in the
long-term ammonia emission inversion in our fol-
lowing work. Therefore, Kong et al (2019) and Li et al
(2021) that focused on emission inventory in a single
year are not capable of tracking the annual variations
as the prior inputs, and not used in this study as well.

Ammonia is assumed to be released only from
anthropogenic activities similar to other air quality
modeling studies over China (Li et al 2021, Yan et al
2021), while natural sources are absent. The detailed
ammonia sources included inMECI were agriculture,
industry, residential, and transportation. The major-
ity were released from agriculture, specifically fertil-
izers and livestock waste (Li et al 2021). The MEIC
emission estimates were coarsened before they were
used to forward the GEOS-Chem simulation. The
coarsened emission inventory was taken as the aver-
age over the 0.5◦ × 0.625◦ model grid cell. A snap-
shot of the coarsened monthly ammonia emission
flux in April, July, and October of 2016 is shown in
figures 2(a.1)–(a.3).

For ammonia out of China, the emission is
from global anthropogenic emissions of the CEDS
inventory (Hoesly et al 2018). Although emissions
out of China also contribute partially to domestic
atmospheric ammonia, especially over the boundary
regions, their contribution is assumed to be certain
and hence will not be optimized here.

2.3. IASI satellite measurements
The IASI is a Fourier transform infrared sounder
onboard the Sun-synchronous orbiting satellites
Meteorological Operational satellite A/B/C (Metop-
A/B/C), which were launched in 2008, 2012, and
2018, respectively. Each IASI instrument enables bi-
daily measurements of a series of atmospheric pol-
lutants passing by between 09:30 and 21:30 (local
time). The IASI has a relatively high spatial resol-
ution (12 km at the nadir) and a swath width of
2 × 1100 km (Clerbaux et al 2009). The ammonia
retrieval algorithm of the IASI has been steadily
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Figure 1. Ammonia modelling domain along with the ground NH3 observations sites in AMoN-China (Pan et al 2018) used in
our emission inversion for independent evaluation. To perform the local analysis, the whole model domain is divided into six
regions according to the China region classification (Resource and Environment Science and Data Center 2014), they are South,
Northeast, Southwest, Northwest, North and East China which are denoted by different colors.

improved. The initial product used lookup tables
based on simulations of a forward radiative transfer
model (Van Damme et al 2014). An artificial neural
network was then applied for ammonia retrieval in
IASI version 1 (Whitburn et al 2016). As infrared
retrievals are known to be sensitive to auxiliary input,
an additional IASI product was released in updated
version 2, which used the temperature data from
ECMWF ERA-Interim instead of using meteorolo-
gical input from IASI itself (Van Damme et al 2017).
The latest release of the IASI (version 3) (ANNI-NH3-
v3R-ERA5) from Metop-A/B was used for ammo-
nia emission inversion in our study. This version
builds on the heritage of versions 1 and 2, and fur-
ther advances have been made in the neural network
retrieval, outlined in Franco et al (2019).

Regardless of the improvement of NH3 column
retrieval from satellite observations, there is still sub-
stantial variability in measurement uncertainty, vary-
ing from 5% to over 1000% (Van Damme et al
2017). Considering the relatively high uncertainty in
infrared retrievals and the high data missing rate
over clouded scenes, IASI products are insufficient
and rarely used for real-time ammonia monitoring,
although their monthly averages are sufficient (Ge
et al 2020). Similarly, the monthly means over the
0.5◦ × 0.625◦ GEOS-Chem grid cell were derived

based on the raw ANNI-NH3-v3R-ERA5 product.
Meanwhile, data selection was used by excluding
irrational observed values (<0) in the monthly aver-
age calculation. Snapshots of the coarse IASI ammo-
nia monthly average in April, July, and October 2016,
are shown in figures 3(a.1)–(a.3).

The goal of this study was to estimate ammonia
emissions through assimilation of coarse IASI ammo-
nia column observations. To achieve this, it is neces-
sary to describe the uncertainty in the measurements
to quantify the observation-minus-simulation mis-
match, as will be discussed in section 3.1. Instru-
ment σinstrument and representing errors σrepresenting

were considered when the uncertainty of the gridded
monthly average ammoniameasurementswere calcu-
lated. The gridded mean of the uncertainties directly
taken from the IASI product was treated as the instru-
ment error σinstrument, whereas the standard devi-
ation of the observation samples for calculating the
grid average was used to characterize the representing
error σrepresenting. The integrated uncertainty σintegrated

for using the coarsened IASI ammoniameasurements
to represent the atmospheric ammonia intensity was
then calculated as:

σintegrated = {(σinstrument)2 +(σrepresenting)2}0.5. (1)

4
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Figure 2. Spatial distribution of the prior (a), the posterior (b) and the posterior minus prior increments (c) monthly NH3

emission in 2016 April (a.1)–(c.1), July (a.2)–( c.2) and October (a.3)–(c.3). The prior inventory is coarsened fromMEIC model,
while the posterior emission is obtained in data assimilation inversion.

Spatial distribution of the uncertainty with
respect to the IASI ammonia column observa-
tions in figures 3(a.1)–(a.3) could also be found in
figures 3(b.1)–(b.3).

2.4. Surface ammonia measurements
The monthly surface concentration from the ammo-
nia monitoring network in China (AMoN-China)
established by Pan et al (2018) was used as an inde-
pendentmeasurement for the assimilation evaluation
in this study. AMoN-China has 53 monitoring sites
on a national scale, which are marked in figure 1.
A year-round observational campaign was launched
between September 2015 and August 2016. Observa-
tion of the spatial variability of atmospheric ammo-
nia was based on uniform protocols using a diffusive
technique. Surface ammonia concentration observa-
tions in April and July 2016were then used to evaluate
improvements in ammonia simulation using emis-
sion inversion.

3. Emission inversion system

This study aimed to develop a top-down ammonia
emission estimation system by assimilating the IASI
measurements described above into the GEOS-Chem
model. The system used a 4DEnVAr assimilation

algorithm to nudge the monthly ammonia emission
inventory. Local analysis was used to better represent
the covariance statistics with limited ensemble
members.

3.1. Assimilation algorithm
The 4DEnVar assimilation algorithm was first pro-
posed by Liu et al (2008) and successfully imple-
mented in our recent dust storm emission inversion
(Jin et al 2021). The goal of this assimilation is to
find the most likely estimate of a state vector, which
is the monthly ammonia emission inventory f over
whole model domain, given the prior guess f b which
is from MEIC model as described in section 2.2 and
the available monthly IASI column observations y as
described in section 2.3. Theoretically, assimilation is
performed by minimizing the cost function J :

J ( f ) =
1

2
( f− fb)

TB−1( f− fb)+
1

2
{y−HM( f )}T

×O−1{y−HM( f)} (2)

hereJ is sum of two parts: the left term quantifies the
penalty of deviation from the prior emission invent-
ory whereas the right term calculates the discrepancy
from measurement. In the background term, f b rep-
resents the prior ammonia emission inventory, which
is here from MEIC as described in section 2.2.
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Figure 3. Spatial distribution of the total column ammonia concentration from IASI (a) and its integrated observational
uncertainty (b), and from the GEOS-Chem simulation either using the prior (c) or using the posterior (d) NH3 emission
inventory in April (a.1)–(d.1), July (a.2)–(d.2) and October 2016 (a.3)–(d.3).

The uncertainty in the ammonia simulation is
assumed to be attributed to errors in the emission
inventory, and can be compensated using a spatially
varying tuning factor α:

f(i) = fb(i) ·α(i) (3)

in here fb(i) denotes the ammonia emission rate in
the given grid cell i. The α values are defined to be
random variables with a mean of 1.0 and a stand-
ard deviation σα = 0.2. This empirical values was
found to provide sufficient spaces for resolving the
observation-minus-simulation errors. A background
covariance Bα is formulated as a product of the con-
stant standard deviation and a spatial correlation
matrix C:

Bα(i, j) = σα ·C(i, j) (4)

where C(i, j) represents a distance-based spatial
correlation between twoαs in the grid cell i and j, and
is defined as:

C(i, j) = e−(di,j/l)
2/2 (5)

where di,j represents the distance between two grid
cells i and j. l here denotes the correlation length
scale which controls the spatially variability freedom
of the αs. A small l means more errors in fine scale
could be resolved using the assimilation, while how-
ever requires more ensemble runs to represent the
model realization from emission to simulation as will
be explained later. An empirical parameter l= 300 km
which is used in Jin et al (2022) to nudge the dust
emission that has a rapid spatially variability is also
taken in this study. To improve the effectiveness of
the limited ensemble, local analysis is conducted as
will be illustrated later. With the covariance matrix
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Bα, the ammonia emission background covariance B
is obtained via a Schur Product:

B= Bα ◦C. (6)

In the observational term in equation (2), y
is the observation vector that stores the coarsen
IASI ammonia columns as has been described in
section 2.3,M is the GEOS-Chemmodel that driven
by the emission f and H is the linear observa-
tional operator that transfer the model simulation
(3D ammonia concentrations) into the observational
space (total columns), O is here for weighting the
observationalmismatch. The observationuncertainty
are assumed to be independent, thereforeO is a diag-
onal matrix. We have used the integrated uncertainty
of the IASI columns calculated in section 2.3 with the
error inflated for the low-values measurementsOi,i =
max(1.0× 1016 moleccm−2, σintegrated)2 to charac-
terize the IASI column observations. The minimum
uncertainty here is to prevent the posterior from get-
ting too close to the low-value observations and hence
become model divergent.

The posterior ammonia inventory f is calculated
by minimizing the cost function in equation (2) fol-
lows the 4DEnVar process, and the detailed proced-
ures are illustrated in section ‘Cost function minim-
ization in 4DEnVar’ in supplementary material.

3.2. Local analysis
The ensemble method is widely used to represent the
covariance statistics of targeted problematic paramet-
ers in geo-scientific modeling. For a given space, a
large ensemble would undoubtedly help to maintain
the spatial or temporal variability and subsequently
better represent the model dynamics, which also
requires more computational power to forward these
ensembles. A local analysis approach was then pro-
posed, which facilitated a high-dimensional estimate
of the global background error covariance based on
a small ensemble (Ott et al 2004). In particular, for
atmospheric ammonia that photo-dissociates read-
ily and has a short atmospheric residence time, the
uncertainty in the simulation tends to lie in a subspace
of much lower dimensions than the full atmospheric
space. To obtain a better representation of the ammo-
nia emission spatial variability on a fine scale, local
analysis was implemented.

The local analysis algorithm is outlined as follows:

• The full model domain was categorized into six
subspaces, including South, Northeast, Southwest,
Northwest, North, and East China as shown in
figure 1, according to the China region classifica-
tion (Resource and Environment Science and Data
Center 2014). The prior emission inventory and
background error covariance were independently
established for each region. Local ensembles were
obtained with the regional prior and covariance.

• The ensemble emission inventory was generated in
full space via combining the local ensembles, and
then forward the ensemble models.

• Data assimilation was performed in each of the six
low-dimensional subspaces and the posterior emis-
sion was obtained in each local region.

• The posteriors in the fullmodel domainwere estab-
lished by combining six local posteriors.

4. Results and discussion

To test the performance of the top-down ammonia
emission inversion system, monthly emission estim-
ation experiments were conducted in each season,
which are April, July, and October 2016 here. The
reason why we skip the winter season is IASI data
product has relatively large errors in cold time as the
retrieval algorithm is highly sensitive to temperature
inputs (Ge et al 2020). A snapshot of the January 2016
IASI ammoniamonthly averagedmeasurement in the
winter season are presented in figure S1. Notably,
much less data coverage is found there, especially in
the Northeast and Southeast China. One of the reas-
ons for the modeling period in 2016 is the availability
of emission results from related studies and surface
ammonia concentration data from AMoN-China for
independent evaluation. Investigations of annual and
seasonal ammonia emission variations over the past
decade will be conducted in our future work.

4.1. NH3 emission
Through assimilating the IASI ammonia columns
into the GEOS-Chem model, the monthly emission
inventory covering the three test months are updated,
which could be found in figures 2(b.1)–(b.3), and
the increments are plotted in figures 2(c.1)–(c.3) as
well. Our top-down posterior emissions show a very
similar pattern to the prior emissions from MEIC
shown in panel (a), but the intensity increased all over
China in general. As shown in figures 2(c.1)–(c.3),
the largest positive increment is presented in East
China, which is as high as 0.5 gm−2 in July. Themiss-
ing ammonia source in the prior MEIC model there
is likely to due to the underestimation of livestock
waste and fertilizer application as indicated by (Li
et al 2021). In addition, the absence of natural ammo-
nia sources might partially account for the underes-
timation in the prior inventory. Besides, ammonia
emission is steadily underrated in North China Plain
(NCP) which is the most severe haze-polluted region
in China. The posterior ammonia emission inventory
not only brought the ammonia concentration in bet-
ter harmonywith themeasurements, but also resulted
a more accurate aerosol simulation in NCP as will be
discussed later.

Based on the prior inventory shown in figure 2(a),
ammonia emission in Xinjiang Province in North-
west China was almost negligible and there were
very limited grid cells with emission flux reaching
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Table 1. Regional monthly NH3 emission (105 tons).

201604 201607 201610

Region Li21 Kong19 Prior Posterior Li21 Kong19 Prior Posterior Li21 Kong19 Prior Posterior

Northeast 0.92 — 0.83 0.93 1.7 — 1.0 1.8 0.6 — 0.68 0.88
North 1.9 — 1.1 1.6 2.5 — 1.3 2.5 1.3 — 0.88 1.6
East 2.2 — 1.7 3.0 3.4 — 2.3 4.3 1.8 — 1.4 2.3
Northwest 1.7 — 0.81 1.9 2.1 — 1.0 1.9 1.1 — 0.65 1.6
Southwest 1.4 — 1.5 1.4 2.0 — 1.8 2.7 1.4 — 1.2 1.4
South 2.8 — 2.3 3.5 3.3 — 2.9 3.7 2.2 — 1.8 2.1
China 11.0 11.1 8.3 12.3 15.0 17.2 10.3 16.9 8.4 — 6.61 9.9

—: data is unavailable.

0.1 gm−2 monthly. Given the low uncertainty shown
in figures 3(b.1)–(b.3), however, the IASI instru-
ments were very confident that there are unignor-
able ammonia pollutants seen in figures 3(a.1)–(a.3).
Ammonia emissions were then nudged several times
higher to better fit the observations. However, the
nonlinearity from the emission to the ammonia load
was not fully reproduced using the ensemble mod-
els, which led to a slight overestimation, as explained
later.

The emission budgets collected from Li et al
(2021) and from Kong et al (2019) are used to eval-
uate our posterior emission inventory. The former
(referred to as Li21) was obtain through improving
fertilizer-related ammonia allocation in a bottom-
up way, while the latter (referred to as Kong19) was
obtained through assimilating the AMoN-China sur-
face measurements. In the most severe summer sea-
son July, the total emission flux in our posterior
estimate increased to 16.9 (×105 tonsm−1), which
is 55.3% higher than the prior estimate (see table 1).
This is also much more consistent with the emission
estimation 15.0 (×105 tonsm−1) from (Li et al 2021)
and 17.2 (×105 tonsm−1) from Kong et al (2019).
The emission increments were heterogeneous in dif-
ferent regions, and significant increases were found in
theNortheast, North, East, Northwest and Southwest,
with a minimum increase of 50%. Northwest China
had the largest increase of approximately 95%. Our
regional ammonia estimations are consistent with
those reported by Li et al (2021) especially in North-
east, North, and Northwest China. The high con-
sistence between our top-down source estimates and
bottom-up inventories from Li et al (2021) suggested
more efforts should be made to the fertilizer-related
emissions while building the ammonia inventory. In
the spring and autumn seasons, our assimilation also
resulted in a posterior that agrees better with the val-
ues reported by Li201 and Kong19.

The posterior calculated in the assimilation has
the least deviation from both the prior ammonia
emission inventory and the IASI column concen-
trations, which are quantified by the background
and observational penalty shown in equation (2).
For the tested three months in 2016, different pri-
ors such as the benchmarks Li201 and Kong19 could

be used alternatively. These priors with less bias and
an appropriate background covariance matrix B are
likely to result in a more promising posterior as illus-
trated in our dust assimilation work (Jin et al 2020).
The difference using various priors are supposed to
be slight when the measurements with a huge size are
dominant in the cost function as indicated in our aer-
osol optical property assimilation (Jin et al 2023).

4.2. NH3 total column concentration
The GEOS-Chem simulated total columns, either
using the prior or posterior ammonia estimates over
the three periods, as shown in figures 3(c) and (d).
The prior result in panel (a) shows a relatively sim-
ilar spatial distribution to the observed columns,
as shown in figure 3(a). Most of the hotspots of
ammonia pollution in East, Southwest, and South
China were well reproduced by the priors. Accord-
ing to the scatter plots of the observation versus the
prior simulation shown in figure 4, the prior res-
ulted in high Pearson correlations (r) with 0.802 in
April, 0.806 in July and 0.661 in October. However,
the prior generally underrated the actual ammonia
loads, which was significantly improved in the pos-
terior simulation in figure 3(d) by assimilating the
IASI columns. The observation-minus-simulation
discrepancies (root mean square error, RMSE) were
efficiently reduced to 0.504, 0.648, and 0.472 (×105

tons/month), which were 33.7, 44.7, and 38.1% lower
than in the prior simulations. The correlation coeffi-
cients r further increased to 0.879, 0.902, and 0.745,
synchronously.

The posterior ammonia emission estimates also
improve the PM2.5 simulation indirectly. The best
example could be seen supplementary figure S2.
Panel (a.1) there illustrated our GEOS-Chem gen-
erally underrated the PM2.5 pollution in the sum-
mer season. The increase of atmospheric ammonia in
our posterior model simulation facilitated the form-
ation of the secondary fine aerosols, and resulted
in a heterogeneous increment of the PM2.5 simula-
tion as shown in panel (b.1). This partially reduced
the PM2.5 simulation errors in GEOS-Chem over the
whole China domain with the RMSE declined from
13.9 to 13.4 µgm−3 as shown in panels (a.2) to
(b.2). Over the most severe polluted region NCP,
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Figure 4. Scatter plot of the observed vs. the simulated NH3 total column concentration over China either using the prior (a) or
using the posterior (b) NH3 emission inventory in 2016 April (a.1)–(b.1), July (a.2)–(b.2) and October (a.3)–(b.3). (a.4)/(b.4)
store parts of the data from (a.1)/(b.2), they plot the prior/posterior simulations against the observed values in Northwest China.

the posterior ammonia emission further improves
the aerosol simulation, where the RMSE is efficiently
reduced from 12.8 to 10.9 µgm−3. Student’s t-tests
(Ni et al 2017) were further carried out to examine
these observation-minus-simulation errors, which
confirmed the obvious improvements (p< 0.001) in
the posterior PM2.5 simulation both over the whole
China domain and NCP.

The GEOS-Chem simulation driven by the pos-
terior is brought to be in better harmony with the
IASI ammonia retrievals using the posterior, how-
ever, the errors still remaines partially. One reason
is that the ensemble emission spreads in equation
(1) in the supplement (e.g. N = 16 in this study)
might be insufficient to represent the very local emis-
sion covariance statistics. In addition, the essence of
4DEnVar assimilation algorithm is to emulate the
GEOS-Chem ammonia simulating model using an
ensemble-based linear approximation, which might
cause a loss of the original model non-linearity to
some degree, especially when the background error
covariance is severely underestimated or overestim-
ated. In this study, the standard deviation (σα) of the
emission tuning factor is set as 0.2 constantly, and it
is capable of resolving the emission errors over most
regions. However, there is a very strong negative bias
in the prior simulation in Xinjiang Province as can be
seen in figure 4(a.4) that plots the scatter distribution
of the observations vs. the simulation over Northwest
China. The actual values (like observations) are sev-
eral times higher than the simulated results, and fall
outside the range defined with σα = 0.2. It will there-
fore lead to an inaccurate assimilation result which is
here the overestimation seen in figure 4(b.4). These

two issues might be partially addressed by using lar-
ger ensemble member and adding additional iter-
ation loops, e.g. iteratively resampling ensemble of
emission inventory and forming new linear approx-
imations at the outer-loops as suggested by Nakano
(2021). These however will severely increase the com-
putational cost and thus challenge the inversion of
long-term ammonia emission estimates over China.

4.3. NH3 surface concentration
The ammonia emission inversion was further eval-
uated using the independent surface ammonia con-
centration data retrieved from AMoN-China. As
shown in figure 5, the GEOS-Chem ammonia sur-
face concentration simulations driven by the pos-
terior emission inventory (panels (b.1) and (b.2))
better agree with the spatial distributions of the
measurements compared to the prior result (pan-
els (a.1) and (a.2)). The negative bias in the prior
surface ammonia concentration simulation for April
and July shown in figure 5(a.3) was improved, with
the RMSE declined from 10.06 µgm−3 to 8.10
µgm−3. Student’s t-test was also conducted, which
shows that there is more than a 99.9% probability
(p< 0.001) the observation-minus-simulation dis-
crepancy is significantly reduced through using the
posterior inventory.

The improvement in the surface concentration
simulation was less than that obtained in the ammo-
nia column concentration modeling, and a neg-
ative bias still exists, as shown in figure 5(b.3).
A potential reason for this is that our simula-
tion was the average ammonia load over the coarse
grid cell (0.5◦ by 0.625◦). However, ground-based
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Figure 5. Spatial distribution of the surface ammonia concentration from the GEOS-Chem simulation either using the prior
(a) or using the posterior (b) NH3 emission inventory in April (a.1)–(b.1), July (a.2)–(b.2). Scatter scenes of the NH3 surface
concentration observation vs. the prior simulation (a.3) and vs. the posterior simulation (b.3).

monitoring sites measured the surrounding status
might differ significantly from the grid average. Rep-
resentation errors exist avoidably while the simulated
value is compared to the surface observation. For
instance, Taishan station (117.1◦ E, 36.3◦ E), which is
in a severely polluted area, as shown in the IASImeas-
urements in figure 3(a.2), reported a low-level ammo-
nia concentration (2.6 µgm−3) in July as marked
in figure 5(a.2). The large mismatch is because the
station was located on a mountain at an elevation
of 1506m; hence, the measurements collected had a
strong bias for representing the average in the coarse
grid. Therefore, the remaining errors in the compar-
ison were unavoidable. To fully represent ammonia
features observed in these ground sites, a model sim-
ulation with an extremely fine resolution is required
which however will make the ensemble-based emis-
sion inversion unaffordable.

5. Summary and conclusion

The past decades have experienced an increase in
atmospheric ammonia emissions in China, which
has caused severe environmental and health con-
cerns. However, current bottom-up emission invent-
ories are highly uncertain and cannot accurately
reflect the spatiotemporal distribution of the ammo-
nia emission. Top-down emission inversion by assim-
ilating measurements from recently developed satel-
lite instruments, such as IASI and CrIS, has become a
powerful method for exploring ammonia emissions,
but such studies in China are limited.

This study developed a 4DEnVar-based emission
inversion system to optimize ammonia emissions

in China. The top-down estimation system was
constructed by feeding ammonia retrievals from the
IASI onboard the polar-orbiting satellites Metop-
A/B into the chemical transport model GEOS-Chem.
Ammonia emission inversion tests were performed
in April, July, and October 2016. The inversion res-
ults indicate that: The prior inventory from theMEIC
model generally captured the ammonia distribution;
however, it heterogeneously underrated their intens-
ity. Significant increments (>50%) were observed by
assimilation in North, East, and Northwest China.
These results were also consistent with the values
obtained in an improved agriculture-based bottom-
up inventory and a top-down estimate that assimil-
ated surface ammonia concentration.

Driven by the posterior emission inventory,
the GEOS-Chem-simulated total ammonia columns
concurred with the IASI measurements. Favorable
posterior simulations were obtained with 33.7%,
44.7%, and 38.1% lower RMSEs and relatively high
correction coefficients (0.878, 0.902, and 0.745) in
April, July, and October, respectively. Superior results
were obtained by comparing the independent surface
ammonia concentrations from China-AMoN.

This promising performance gives us confidence
to explore the characteristics of ammonia emissions
in China, for example, annual, seasonal, and detailed
spatial variability in the past decade, by assimilat-
ing the IASI measurements in the near future. How-
ever, a space for improving the emission inversion
system also exists. For instance, logarithmic amplifi-
ers should be consideredwhile building tuning factors
for emissions when a very strong negative bias is
present. In addition, the other advanced ammonia
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satellite product CrIS deserves attention, which will
be considered for assimilation together with IASI data
in our future work.

Code and data availability

The ammonia emission inversion system is in the
Python environment and is archived on Zenodo
(https://doi.org/10.5281/zenodo.7015397; Jianbing
Jin, 2022). The IASI ANNI-NH3-v3R-ERA5 data
suites are available at https://iasi.aeris-data.fr/. The
observed NH3 concentrations data (AMoN-China)
is published by Pan et al (2018) from Institute of
Atmospheric Physics, Chinese Academy of Sciences.
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