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• In BTH and YRD, meteorology favored 
the increase in O3-PM2.5PD while emis-
sions had an opposite impact in 
2013–2020. 

• The rise in T2m_max and T2m was key 
meteorological factors for O3-PM2.5PD 
in BTH and YRD. 

• Cutting VOCs in BTH and YRD urban 
areas lowers both O3-PM2.5PD and 
oxidizing capacity. 

• Synergistic NOx and VOC cuts led to 
large O3-PM2.5PD drops in urban and 
non-urban areas.  

A R T I C L E  I N F O   

Editor: Jianmin Chen  

Keywords: 
Ozone and PM2.5 pollution 
Emission reductions 
Meteorology 

A B S T R A C T   

We applied a three-dimensional (3-D) global chemical transport model (GEOS-Chem) to evaluate the influences 
of meteorology and anthropogenic emissions on the co-occurrence of ozone (O3) and fine particulate matter 
(PM2.5) pollution day (O3-PM2.5PD) in urban and non-urban areas of the Beijing-Tianjin-Hebei (BTH) and 
Yangtze River Delta (YRD) regions during the warm season (April–October) from 2013 to 2020. The model 
captured the observed O3-PM2.5PD trends and spatial distributions well. From 2013 to 2020, with changes in 
both anthropogenic emissions and meteorology, the simulated values of O3-PM2.5PD in the urban (non-urban) 
areas of the BTH and YRD regions were 424.8 (330.1) and 309.3 (286.9) days, respectively, suggesting that 
pollution in non-urban areas also warrants attention. The trends in the simulated values of O3-PM2.5PD were 
− 0.14 and − 0.15 (+1.18 and +0.81) days yr− 1 in the BTH (YRD) urban and non-urban areas, respectively. 
Sensitivity simulations revealed that changes in anthropogenic emissions decreased the occurrence of O3- 
PM2.5PD, with trends of − 0.99 and − 1.23 (− 1.47 and − 1.92) days yr− 1 in the BTH (YRD) urban and non-urban 
areas, respectively. Conversely, meteorological conditions could exacerbate the frequency of O3-PM2.5PD, 
especially in the urban YRD areas, but less notably in the urban BTH areas, with trends of +2.11 and +0.30 days 
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yr− 1, respectively, owing to changes in meteorology only. The increases in T2m_max and T2m were the main 
meteorological factors affecting O3-PM2.5PD in most BTH and YRD areas. Furthermore, by conducting sensitivity 
experiments with different levels of pollutant precursor reductions in 2020, we found that volatile organic 
compound (VOC) reductions primarily benefited O3-PM2.5PD decreases in urban areas and that NOx reductions 
more notably influenced those in non-urban areas, especially in the YRD region. Simultaneously, reducing VOC 
and NOx emissions by 50 % resulted in considerable O3-PM2.5PD decreases (58.8–72.6 %) in the urban and non- 
urban areas of the BTH and YRD regions. The results of this study have important implications for the control of 
O3-PM2.5PD in the urban and non-urban areas of the BTH and YRD regions.   

1. Introduction 

In recent years, severe air pollution has occurred in China, which has 
attracted public and governmental attention. This phenomenon is 
mainly characterized by ozone (O3) and fine particulate matter (PM2.5) 
pollution. Since 2013, stringent clean air actions have been imple-
mented to improve the air quality in China (State Council of the People's 
Republic of China, 2013, 2018). However, O3 concentrations have 
rapidly increased in China, and the daily maximum 8-h average ozone 
(MDA8 O3) concentration often exceeds Grade II (160 μg m− 3) of the 
Chinese Ambient Air Quality Standards (CAAQS) (Li et al., 2020). 
Additionally, PM2.5 concentrations in China have remained persistently 
high, with 61.9 % of 168 key cities exceeding Grade I (35 μg m− 3) of the 
CAAQS in 2020 (Ministry of Ecology and Environment of the People's 
Republic of China, 2021). Notably, the co-occurrence of O3 and PM2.5 
pollution day (O3-PM2.5PD; with a maximum daily 8 h average O3 
(MDA8 O3) > 160 μg m− 3 and PM2.5 > 35 μg m− 3) has been frequently 
observed from April–October (Dai et al., 2021; Shao et al., 2022), 
especially in typical polluted areas in eastern China, including the 
Yangtze River Delta (YRD; 30–33◦N, 119–122◦E) and Beijing-Tianjin- 
Hebei (BTH; 34–41◦N, 113–119◦E) regions (Dai et al., 2023; Qin 
et al., 2021). Exposure to high surface O3 and PM2.5 concentrations is 
detrimental to human health (Yin et al., 2017; Y. Zhang et al., 2019; Q. 
Zhang et al., 2019), vegetation (Wang et al., 2018; Gong et al., 2021), 
and ecosystems (Yue et al., 2017). Therefore, understanding the varia-
tion in O3-PM2.5PD from 2013 to 2020 and delineating the respective 
roles of anthropogenic emissions and meteorological factors are 
important for developing effective pollution control strategies. 

Few studies have focused on addressing the trends and characteris-
tics of the co-occurrence of O3 and PM2.5 pollution in the YRD and BTH 
regions. Qin et al. (2021) utilized observations from the China National 
Environmental Monitoring Center (CNEMC) for 2015–2019 and re-
ported that double-high pollution (DHP) events (defined as events 
characterized by MDA8 O3 > 160 μg m− 3 and PM2.5 > 75 μg m− 3) mostly 
occurred in the northwestern YRD region, especially in spring (April) 
and autumn (October), and that the total number of DHP events in the 
YRD region decreased from 2015 to 2019. Ou et al. (2022) studied the 
observed co-pollution of O3 and PM2.5 (MDA8 O3 > 160 μg m− 3 and 
PM2.5 > 35 μg m− 3) from May–September 2015–2019 across the BTH 
region and revealed that co-pollution has become the main type of air 
pollution during the high-temperature season since 2017, and most co- 
pollution is initiated by high O3 concentrations during the day. Dai et al. 
(2023) applied a three-dimensional (3-D) global chemical transport 
model (GEOS-Chem) to investigate the chemical and physical charac-
teristics of O3 and PM2.5 co-pollution days from 2013 to 2020 in the BTH 
region via composite analyses and found that co-polluted days often 
exhibited greater atmospheric oxidation, while secondary aerosols (ni-
trate, ammonium, and sulfate) experienced intense chemical production 
reactions at altitudes from 913 to 819 hPa, which were then transported 
downwards, resulting in relatively uniform vertical profiles on O3 and 
PM2.5 co-pollution days. 

Several studies have investigated the favourable meteorological 
conditions for the co-occurrence of O3 and PM2.5 pollution. By using 
observation data from the CNEMC and China Meteorological Adminis-
tration (CMA), Dai et al. (2021) reported that co-polluted days in the 

YRD region from 2013 to 2019 mainly occurred in April (29.6 % of the 
total co-polluted days occurred in April), May (23.0 %), June (19.5 %), 
and October (10.8 %), which were characterized by a higher relative 
humidity, an elevated surface air temperature, and a lower wind speed 
than days with O3 pollution alone. Luo et al. (2022) used the T-mode 
principal component analysis (T-PCA) method and revealed that the 
observed shift in O3 and PM2.5 DHP events in the BTH region from 
summer to early spring of 2015–2019 was primarily influenced by the 
prevailing weather patterns, which resulted in higher temperatures and 
more intense radiation in early spring. Ma et al. (2023) analysed hourly 
O3 and PM2.5 data from the CNEMC and meteorological variables from 
the European Centre for Medium-Range Weather Forecasts (ECMWF) 
Reanalysis v5.0 dataset and reported that O3 and PM2.5 co-pollution in 
the BTH region from April–May from 2015 to 2019 occurred under hot, 
humid, and stagnant conditions, dominated by an anomalous anticy-
clonic circulation pattern over North China. 

Apart from meteorological factors, O3 and PM2.5 co-pollution is 
significantly influenced by anthropogenic emissions. However, most 
research has focused only on examining the impact of anthropogenic 
emissions on O3 or PM2.5 pollution. With the utilization of the Com-
munity Multiscale Air Quality (CMAQ) modelling system model, Wang 
et al. (2019) demonstrated that emission reductions in 2014 and 2015 
effectively reduced PM2.5 concentrations in China by 23.9 and 43.5 μg 
m− 3, respectively, but these reductions were partially counteracted by 
unfavourable meteorological conditions. Dang et al. (2021) applied the 
GEOS-Chem model to examine the anthropogenic and meteorological 
contributions to the summertime O3 trends in the BTH and YRD regions 
from 2012 to 2017 and reported that variations in both anthropogenic 
emissions and meteorological conditions contributed to the increase in 
MDA8 O3 levels, with contributions of 39 % and 49 %, respectively, in 
the BTH region and 13 % and 84 %, respectively, in the YRD region. 
Ding et al. (2022) used the WRF-CMAQ model to evaluate strategies for 
synergistic reductions in the O3 and PM2.5 concentrations in the BTH 
region and discovered that a reduction in NOx emissions (64 %–81 %) is 
crucial for meeting air quality standards and highlighted the necessity of 
simultaneous volatile organic compound (VOC) and NOx emission 
control in winter while intensifying NOx control in summer. 

Previous studies have mostly focused on the characteristics and 
meteorological conditions of O3 and PM2.5 co-pollution and have mainly 
considered urban cities or entire areas of the BTH and YRD regions. 
However, due to the longer lifecycle of O3, in addition to the occurrence 
of O3 and PM2.5 co-pollution in urban areas, pollution in non-urban 
areas should be investigated. Furthermore, almost no research has 
focused on investigating the impacts of meteorology and anthropogenic 
emissions on O3 and PM2.5 co-pollution in urban and non-urban areas, 
which is meaningful for systematically formulating regional joint pre-
vention and control measures for such pollution events. 

In this work, we utilized GEOS-Chem model to simulate the co- 
occurrence of O3 and PM2.5 pollution days in the urban and non-urban 
areas of the BTH and YRD regions from 2013 to 2020 and conducted 
multiple sensitivity experiments. The aims of this study were (1) to 
investigate the contributions of meteorological conditions and anthro-
pogenic emissions to the trends in the co-occurrence of O3 and PM2.5 
pollution days, (2) to identify the dominant meteorological variables on 
these co-pollution days, and (3) to assess effective emission reduction 
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strategies for controlling the co-occurrence of O3 and PM2.5 pollution 
days in both the urban and non-urban areas of the BTH and YRD regions. 

2. Methods 

2.1. Surface O3 and PM2.5 monitoring network 

Hourly surface O3 and PM2.5 concentrations from 2013 to 2020 were 
obtained from the CNEMC (http://www.cnemc.cn; last access: 27 
November 2023). To ensure the data quality, the MDA8 O3 concentra-
tion was calculated only when the number of valid data points was at 
least 6 for each 8-hour interval, and the daily PM2.5 concentration was 
calculated when the number of valid data points was at least 20 for each 
day. Additionally, the number of days with valid O3 or PM2.5 concen-
trations should be >15 each month. For model evaluation, the obser-
vations were averaged over the 0.5◦ latitude × 0.625◦ longitude model 
grid cells. Notably, the observed O3 concentrations from the CNEMC are 
expressed in units of micrograms per cubic metre, under standard con-
ditions of 273 K and 1013 hPa before 31 August 2018 and thereafter 
under reference conditions of 298 K and 1013 hPa (http://www.mee. 
gov.cn/, last access: 27 November 2023). To enable the analysis of 
long-term series and to ensure consistency between the observations and 
simulations, we converted the post-31 August 2018 O3 concentrations to 
the standard conditions of 273 K and 1013 hPa. 

2.2. Study areas 

Following the above data quality control methods, we selected 79 
valid observation sites in the BTH region (37–41◦N, 114–118◦E) and 154 
valid sites in the YRD region (29–32.5◦N, 116–123◦E), as shown in 
Fig. 1. In addition to the selected observation sites, we considered the 
locations of the urban areas in the BTH and YRD regions. The definition 
of urban areas is based on the research of Sun et al. (2022) and can be 
obtained from http://www.doi.org/10.11922/. This dataset is the first 
globally developed Chinese urban dataset based on United Nations 
standards for built-up areas by using remote sensing technology. This 
dataset exhibits high accuracy and is widely applied in different studies. 
As shown in Fig. 1, most observation sites in the BTH and YRD regions 
occurred in urban areas, which could result in loss of information on 
rural regions. Therefore, it is important to exploit the model to study O3 
and PM2.5 co-pollution in both the urban and non-urban areas of the 
BTH and YRD regions. 

2.3. Meteorological data and multiple linear regression model 

Meteorological parameters for 2013–2020 were retrieved from the 
Modern-Era Retrospective Analysis for Research and Applications 
(MERRA-2) dataset, which was generated by the NASA Global Modelling 
and Assimilation Office (GMAO), with a horizontal resolution of 0.5◦

latitude by 0.625◦ longitude. Following Li et al. (2019) and Dang et al. 
(2021), 15 meteorological parameters (Table S1) were considered 

original candidate meteorological predictors for the multiple linear 
regression (MLR) model. 

The MLR model aims to establish a function between the response 
variable and several predictor variables and has been widely used to 
analyse the relationships between meteorological conditions and air 
pollutants (Shen et al., 2015; Yang et al., 2016; Chen et al., 2020; Dang 
et al., 2021; Qian et al., 2022). The MLR model can be expressed as 
follows: 

y = β0 +
∑N

k=1
βkxk + ε (1)  

where y is the MDA8 O3 (or PM2.5) concentration or the frequency of O3 
and PM2.5 pollution days, xk denotes a given meteorological predictor, 
as listed in Table S1, β0 is the intercept term, βk is the regression coef-
ficient for the k-th meteorological predictor, and ε is the residual term. 
The meteorological variables statistically significant at the 95 % confi-
dence level were retained as potential predictors for subsequent step-
wise linear regression analysis. To minimize the influence of the 
correlations between the meteorological predictors, the variance infla-
tion factor (VIF) was used to examine the multicollinearity problem 
(Altland, 1999; Che et al., 2019), and the VIF can be calculated as 
follows: 

VIF =
1

1 − R2
i

(2)  

where R2
i is the coefficient of determination obtained from the regres-

sion between the i-th meteorological predictor and the other meteoro-
logical predictors. We adopted a threshold value of 10 for the VIF to 
delineate the maximum acceptable level of collinearity. Consequently, 
any meteorological predictors exhibiting a VIF value exceeding this 
threshold were excluded from the analysis. 

2.4. GEOS-Chem model 

2.4.1. Model description 
We simulated the O3 and PM2.5 concentrations using the nested-grid 

version of the GEOS-Chem model (version 11–01; http://acmg.seas.ha 
rvard.edu/geos/), which was driven by meteorological fields from the 
MERRA-2 dataset (Gelaro et al., 2017). The nested-grid domain was set 
over Asia (11◦S–55◦N, 60–150◦E), with a horizontal resolution of 0.5◦

latitude by 0.625◦ longitude and 47 vertical layers up to an altitude of 
0.01 hPa. The chemical boundary conditions for the gas and aerosol 
simulations of the nested grid were provided by coupled global GEOS- 
Chem simulations with a 2.5◦ latitude by 2.5◦ longitude horizontal 
resolution, and the model was spun up for 6 months before integration 
over the study period to ensure reliability. 

The GEOS-Chem model includes a fully coupled 
HOx–NOx–VOC–O3–aerosol chemical mechanism that includes approx-
imately 300 chemical species involved in >400 kinetic and photolysis 

Fig. 1. BTH (37–41◦N, 114–118◦E) and YRD (29–32.5◦N, 116–123◦E) regions marked by red rectangles; the locations of the observation sites are indicated. The 
pentagrams indicate the observation sites, and the regions surrounded by pink indicate the urban areas of the BTH and YRD regions. 
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reactions (Bey et al., 2001; Pye et al., 2009; Mao et al., 2013). The PM2.5 
components simulated in the GEOS-Chem model include sulfate (Park, 
2004), nitrate (Pye et al., 2009), ammonium, black carbon (BC), primary 
organic carbon (OC) (Park, 2003), mineral dust (Fairlie et al., 2007), and 
sea salt (Alexander et al., 2005). Considering that mineral dust and sea 
salt aerosols are not the major components in China and that their 
concentrations are generally low according to previous measurements 
(Xuan et al., 2000; Ye et al., 2003; Duan et al., 2006; Zhao et al., 2013), 
we calculated the PM2.5 concentration in this study as the sum of the 
sulfate, nitrate, ammonium, BC, and OC masses. 

2.4.2. Emissions 
Global anthropogenic emissions were sourced from the Community 

Emissions Data System (CEDS) developed by Hoesly et al. (2018). 
Within the Asian domain, specifically for China, anthropogenic emis-
sions were acquired from the Multiresolution Emission Inventory for 
China (MEIC), which includes the anthropogenic emissions of OC, BC, 
carbon monoxide (CO), sulfur dioxide (SO2), NOx, ammonia (NH3), and 
VOCs from the agriculture, industry, power, residential, and trans-
portation sectors for 2013–2020 (Li et al., 2017; Zheng et al., 2018; 
Zheng et al., 2021). Biogenic emissions in the GEOS-Chem model were 
calculated online with the Model of Emissions of Gases and Aerosols 
from Nature (MEGAN v2.1), following Guenther et al. (2012). 

Fig. 2 shows the variations in the anthropogenic emissions of O3 
precursors, aerosols, and aerosol precursors in the BTH and YRD regions 
from 2013 to 2020 during the warm season (April–October) obtained 
from the MEIC. During this period, a general downward trend in most 
anthropogenic emissions was observed in both the BTH and YRD re-
gions, with the greatest reduction noted in SO2 emissions. This signifi-
cant decrease could be attributed to the stringent emission control 
measures implemented to improve the air quality in China since 2013 
(State Council of the People's Republic of China, 2013, 2018). However, 
the NH3 emissions did not exhibit a clear trend, reflecting the relative 
stability of agricultural sources. Comparatively, by 2020, the emissions 
of BC, NH3, NOx, OC, SO2, and nonmethane VOC (NMVOC) in the BTH 
(YRD) region decreased by 48.2 % (42.4 %), 8.2 % (14.7 %), 31.9 % 
(30.5 %), 47.9 % (42.6 %), 79.6 % (80.3 %), and 4.9 % (1.5 %), 
respectively, relative to 2013 levels. The variations in emissions ob-
tained in this study are consistent with the results of Zheng et al. (2021). 

2.4.3. Numerical experiments 
To investigate the relative effects of changes in anthropogenic 

emissions and meteorological parameters on O3-PM2.5PD during the 
warm season from 2013 to 2020, as well as to assess the impact of the 
reduction in the emissions of each precursor on O3-PM2.5PD, we con-
ducted multiple sensitivity simulation experiments using the GEOS- 
Chem model. The results are presented in Table 1. The standard simu-
lation (CTRL) included variations in both anthropogenic emissions and 
meteorological fields over the 2013–2020 period. The FixE (FixM) 
simulation was the same as the CTRL experiment but with the anthro-
pogenic emissions (meteorological fields) fixed at 2013 levels. The FixE 
and FixM simulations were designed to investigate the impacts of 
changes in the meteorological parameters and anthropogenic emissions 
on O3-PM2.5PD from 2013 to 2020, respectively. 

Moreover, to determine the specific impacts of the main pollutant 
precursors on O3-PM2.5PD, we conducted ten additional sensitivity 
simulations using the GEOS-Chem model. It was estimated that the 
anthropogenic NOx, SO2, VOC and NH3 emissions decreased by 38 %, 51 
%, 11 % and 17 %, respectively, in China, owing to China's Air Pollution 
Control Plan and the Three-Year Action Plan from 2013 to 2019 (Jiang 
et al., 2022). Therefore, our experiments assumed reasonable reductions 
of 25 % and 50 % in precursors (i.e., NH3–25 %, NOx-25 %, SO2–25 %, 
VOC-25 %, NH3–50 %, NOx-50 %, SO2–50 %, VOC-50 %, NOx-VOC-25 
%, and NOx-VOC-50 %) to investigate the responses of O3-PM2.5PD to 
reductions in different precursors. The contribution of the reduction in 
emissions of each precursor to O3-PM2.5PD mitigation was obtained by 
comparing the results of each sensitivity simulation with those of the 

Fig. 2. Changes in the anthropogenic emissions of BC, NH3, NOx, OC, SO2 and NMVOC (unit: Tg) during the warm season (April–October) in (a) the BTH and (b) YRD 
regions from 2013 to 2020; percentage changes in these emissions compared to the baseline values in 2013 (unit: %) in (c) the BTH and (d) YRD regions. 

Table 1 
Configurations of the GEOS-Chem simulations in this study.  

Simulation Meteorologi-cal 
fields 

Anthropogenic emissions 

CTRL 2013–2020 2013–2020 
FixE 2013–2020 2013 
FixM 2013 2013–2020 
NH3–25 (50) % 2020 25 (50) % reduction in NH3 in 2020 
NOx-25 (50) % 2020 25 (50) % reduction in NOx in 2020 
SO2–25 (50) % 2020 25 (50) % reduction in SO2 in 2020 
VOC-25 (50) % 2020 25 (50) % reduction in VOC in 2020 
NOx-VOC-25 (50) 

% 
2020 25 (50) % reduction in NOx and VOC in 

2020  
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CTRL simulation. The year 2020 was selected for these emission 
reduction simulations as it represents the most recent year with emission 
data available from the MEIC, providing a relevant and contemporary 
basis for evaluating and developing future emission abatement policies. 

3. Results and discussion 

3.1. Observed O3 and PM2.5 pollution days 

Fig. 3 shows the spatial and temporal distributions of the observed 
O3 and PM2.5 pollution days over the April–October period from 2013 to 
2020, with the PM2.5 concentrations exceeding the CAAQS Grade II (75 
μg m− 3) and Grade I (35 μg m− 3) standards, respectively. The numbers 
of both O3-PM2.5PD-75 and O3-PM2.5PD were larger in the BTH region 
than in the YRD region, which could be attributed to the higher levels of 
anthropogenic emissions in the BTH region (Dang et al., 2021). As 
shown in Fig. 3a, between 2013 and 2020, there was a marked decrease 
in the number of O3-PM2.5PD-75 in both the BTH and YRD regions, with 
the average number of O3-PM2.5PD-75 in the BTH region (YRD) 
decreasing from 41.2 (20.3) days in 2013 to 8.5 (4.7) days in 2020. The 
observed significant decrease in O3-PM2.5PD-75 primarily resulted from 
reduced PM2.5 concentrations, attributable to the stringent emission 
controls on primary particulate matter and SO2 implemented since 2013 
(Zheng et al., 2018; Y. Zhang et al., 2019; Q. Zhang et al., 2019), coupled 
with the generally lower PM2.5 concentrations during the warm season. 

Notably, as shown in Fig. 3b, the variation in the number of O3- 
PM2.5PD differed significantly from that of O3-PM2.5PD-75. In the BTH 
and YRD regions, the number of O3-PM2.5PD did not decrease from 2013 
to 2020. Instead, there was a period of more intense pollution from 2016 
to 2018. Therefore, investigating the primary factors influencing the 
fluctuations in O3-PM2.5PD, along with assessing the effect of emission 
reductions of various precursors on O3-PM2.5PD reduction, has signifi-
cant implications for the prevention and control of complex air pollution 
conditions in China. 

3.2. Simulated pollution days and model evaluation 

3.2.1. Simulated MDA8 O3 and PM2.5 concentrations 
Fig. 4 shows a comparison of the time series of the simulated and 

observed daily mean surface-layer MDA8 O3 and PM2.5 concentrations 
in the BTH and YRD regions from 2013 to 2020. The model generally 
captured the daily variations (peaks and troughs) in the observed MDA8 
O3 and PM2.5 concentrations well, with correlation coefficients (R 
values) of 0.8 and 0.72 for MDA8 O3 and PM2.5, respectively, in the BTH 
region and 0.7 and 0.71, respectively, in the YRD region. The simulated 
daily MDA8 O3 (PM2.5) concentrations during the eight warm seasons 
from 2013 to 2020 exhibited a normalized mean bias of +7.9 % (+10.6 
%) in the BTH region and +17.3 % (− 3.1 %) in the YRD region. The 
model performance obtained in this study closely agreed with the 

findings of previous work also utilizing the GEOS-Chem model (Dang 
and Liao, 2019; Gong and Liao, 2019; Dai et al., 2023). Overall, the 
model exhibited a favourable ability to reproduce the observed varia-
tions in the MDA8 O3 and PM2.5 concentrations. 

3.2.2. Simulated O3 and PM2.5 pollution days 
Fig. 5 shows the ability of the GEOS-Chem model for capturing the 

observed O3 and PM2.5 pollution days. The frequency of the observed 
O3-PM2.5PD was highest in the BTH region, as shown in Fig. 5a, and the 
spatial distribution of these pollution days was captured relatively well 
by the GEOS-Chem model. The total numbers of the observed and 
simulated O3-PM2.5PD summed over April–October 2013–2020 were 
369 and 377 days, respectively, averaged across the BTH region and 223 
and 297 days, respectively, averaged across the YRD region. Notably, 
the numbers of the simulated O3-PM2.5PD in the urban (non-urban) 
areas of the BTH and YRD regions were 424.8 (330.1) and 309.3 (286.9) 
days, respectively, suggesting that pollution in non-urban areas should 
also be considered. 

Fig. 5b shows a comparison of the temporal evolution patterns of 
both the observed and simulated frequencies of O3-PM2.5PD in the BTH 
and YRD regions from 2013 to 2020. The GEOS-Chem model generally 
reproduced the observed annual variations in O3-PM2.5PD in the BTH 
and YRD regions, with a slight underestimation of the number of O3- 
PM2.5PD, especially in the BTH region. This underestimation mainly 
resulted from the deficiency of the model in capturing the peak O3 and 
PM2.5 concentrations, which has also been reported in previous studies 
using the GEOS-Chem model or the Weather Research and Forecasting 
with Chemistry (WFR-chem) model (Zhang and Wang, 2016; Ni et al., 
2018; Gong and Liao, 2019; Dang and Liao, 2019). In general, the GEOS- 
Chem model could capture the spatial distribution and annual changes 
in the observed O3-PM2.5PD in the BTH and YRD regions from April to 
October 2013–2020. 

3.3. Meteorological vs. anthropogenic contributions to the O3-PM2.5PD 
trends from 2013 to 2020 

The impacts of meteorological factor and anthropogenic emission 
changes on the O3-PM2.5PD trends in the BTH and YRD regions from 
2013 to 2020 are shown in Fig. 6. In the CTRL simulation experiment 
(Fig. 6a), the spatial distribution of O3-PM2.5PD influenced by both 
emissions and meteorological changes agreed with that of the observa-
tions, showing particular severity in eastern China, especially in the BTH 
region, and was accompanied by obvious interannual variations from 
2013 to 2020. Moreover, the variations in the spatial and temporal 
distributions of O3-PM2.5PD determined in the FixE simulation experi-
ment (Fig. 6b) were similar to those determined in the CTRL simulation 
experiment, indicating that changes in meteorological fields primarily 
drove the interannual variations in O3-PM2.5PD. Conversely, the FixM 
simulation experiment (Fig. 6c) demonstrated a steady decline in O3- 

Fig. 3. Spatial distributions of the observed numbers of (a) O3-PM2.5PD-75 (MDA8 O3 > 160 μg m− 3 and PM2.5 > 75 μg m− 3) and (b) O3-PM2.5PD (MDA8 O3 > 160 
μg m− 3 and PM2.5 > 35 μg m− 3) in eastern China from April–October 2013 to 2020. The solid black rectangles indicate the BTH and YRD regions. 
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PM2.5PD without interannual fluctuations, highlighting the significant 
impact of anthropogenic emission changes on decreasing the number of 
O3-PM2.5PD from 2013 to 2020. 

Fig. 6d–g show the O3-PM2.5PD trends in the urban and non-urban 
areas of the BTH and YRD regions from 2013 to 2020 derived from 
the CTRL, FixE, and FixM simulations. In the urban and non-urban areas 
of the BTH region, the number of O3-PM2.5PD showed a slight downward 
trend in the CTRL simulation experiment, decreasing by − 0.14 and 
− 0.15 days yr− 1, respectively. In the FixM simulation experiment (i.e., 
with changes in emissions only from 2013 to 2020), the number of O3- 
PM2.5PD exhibited decreasing trends of − 0.99 and − 1.23 days yr− 1, 
respectively. In the FixE simulation experiment (i.e., with changes in 
meteorological fields only from 2013 to 2020), the number of O3- 
PM2.5PD increased by +0.30 and − 0.19 days yr− 1, respectively. In 
contrast, in the urban (non-urban) areas of the YRD region, the fre-
quency of O3-PM2.5PD determined in the CTRL, FixM, and FixE simu-
lations exhibited trends of +1.18 (+0.81), − 1.74 (− 1.92), and +2.11 
(+1.50) days yr− 1, respectively. 

Overall, from 2013 to 2020, changes in anthropogenic emissions 
resulted in a significant decrease in the number of O3-PM2.5PD in the 
BTH and YRD regions, with a more pronounced reduction in the non- 
urban areas than in the urban areas, which is likely due to the 
different sensitivities of O3 to NOx and VOCs (with urban areas more 
sensitive to VOCs and rural areas more sensitive to NOx). Conversely, 
meteorological conditions exerted different impacts on the trends in O3- 
PM2.5PD in the BTH and YRD regions. In the BTH region, the impact was 
minimal, while in the YRD region, meteorological conditions contrib-
uted significantly to the increase in O3-PM2.5PD, indicating that the 

meteorological conditions in the YRD region from 2013 to 2020 were 
relatively favourable for the occurrence of O3-PM2.5PD. 

Fig. 7 shows the trends in the MDA8 O3 and PM2.5 concentrations 
obtained in the CTRL, FixM, and FixE simulations. From 2013 to 2020, 
the MDA8 O3 concentrations in both the urban and non-urban areas of 
the BTH and YRD regions showed significant increasing trends, with 
increases of +1.10 ppb yr− 1 in the BTH region and +0.93 ppb yr− 1 in the 
YRD region. These increases were primarily driven by anthropogenic 
emission changes and were more notable in the urban areas than in the 
non-urban areas. Moreover, the PM2.5 concentrations across the BTH 
and YRD regions dramatically decreased, with trends of − 5.25 μg m− 3 

yr− 1 in the urban BTH areas and − 1.96 μg m− 3 yr− 1 in the urban YRD 
areas, respectively, which was attributable to the combined influence of 
anthropogenic emissions and meteorological conditions. The trend in 
the non-urban areas mirrored that in the urban areas but exhibited a 
lower value. Therefore, the increase in the MDA8 O3 concentration was 
the primary factor driving the increase in O3-PM2.5PD, while the 
decrease in the PM2.5 concentration exerted the opposite effect. As 
shown in Fig. S1, from 2013 to 2020, the increasing trend in O3-PM2.5PD 
in the urban YRD areas (+1.18 days yr− 1) was largely driven by the 
change in the MDA8 O3 concentration, with a strong positive correlation 
of +0.86. In contrast, the trend in O3-PM2.5PD in the urban BTH areas 
(+0.30 days yr− 1) was partially influenced by the increase in the MDA8 
O3 concentration (correlation of +0.72) and significantly affected by the 
notable decrease in the PM2.5 concentration (correlation of − 0.80), 
resulting in a slight upward trend. 

Fig. 4. Daily surface-layer simulated and observed MDA8 O3 (a-b) and PM2.5 (c-d) concentrations, averaged over the BTH and YRD regions from April to October 
2013–2020. The correlation coefficient (R) and normalized mean bias (NMB) values are also shown, with NMB = (

∑N
i=1(Mi − Oi)/

∑N
i=1(Oi)) × 100 %, where Oi and 

Mi are the observed and simulated concentrations, respectively, i denotes the ith day, and N is the total number of days. 

Fig. 5. (a) Spatial distributions of the simulated (CTRL, shaded) and observed (CNEMC, dots) numbers of O3-PM2.5PD summed over April–October 2013–2020. The 
solid black rectangles indicate the BTH and YRD regions, and the black shaded bars denote the number of O3-PM2.5PD (days) in the urban and non-urban areas. (b) 
Temporal evolution of the frequency of O3-PM2.5PD in the BTH and YRD regions from 2013 to 2020 derived from the observations and model simulations. 
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3.4. Impacts of the key meteorological parameters on O3-PM2.5PD 

Thus far, we have examined the influences of meteorological fields 
and anthropogenic emissions on the O3-PM2.5PD variations from 2013 to 

2020 by employing modelling simulations, and the results showed that 
meteorological conditions greatly affected the annual fluctuations and 
overall increasing trend in O3-PM2.5PD. Therefore, we further investi-
gated the key meteorological parameters influencing the observed O3- 

Fig. 6. Spatial distributions of the frequency of O3-PM2.5PD (days) from the (a) CTRL, (b) FixE, and (c) FixM simulations over 2013–2020; the solid black rectangles 
indicate the BTH and YRD regions. O3-PM2.5PD frequency trends (days yr− 1) in (d) the urban BTH, (e) non-urban BTH, (f) urban YRD, and (g) non-urban YRD areas 
from the CTRL, FixM, and FixE simulations. 

Fig. 7. Trends in the MDA8 O3 (ppb yr− 1) and PM2.5 (μg m− 3 yr− 1) concentrations from 2013 to 2020 in the (a) urban BTH, (b) non-urban BTH, (c) urban YRD, and 
(d) non-urban YRD areas from the CTRL, FixM, and FixE simulation experiments. 
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PM2.5PD variations using the MLR approach, and the meteorological 
predictors are listed in Table S1. Here, only the top three meteorological 
predictors selected by the MLR model were used to avoid data over-
fitting (Li et al., 2019). To isolate the effects of the various meteoro-
logical factors, the MDA8 O3 and PM2.5 concentrations utilized in the 
MLR model were derived from the FixE simulation from 2013 to 2020. 

Fig. 8 shows the spatial distribution, regression coefficient, and 
trends in the top meteorological factors identified by the MLR model as 
most significantly influencing the MDA8 O3 and PM2.5 concentrations 
and O3-PM2.5PD in the BTH region from 2013 to 2020. In most urban 
areas of the BTH region, T2m and T2m_max primarily affected the 
MDA8 O3 concentrations, while RH_1000 and planetary boundary layer 
height (PBLH) were important for the PM2.5 concentrations, and T2m 
was crucial for O3-PM2.5PD. The patterns of the top meteorological 
factors influencing the MDA8 O3 concentration and O3-PM2.5PD were 
relatively similar. The increase in T2m_max and T2m (Fig. 8g and i) from 
2013 to 2020 was the main reason for the increase in the meteorologi-
cally driven MDA8 O3 concentration and O3-PM2.5PD, whereas the 
decrease in RH1000 and increase in PBLH (Fig. 8h) were the two major 
contributors to the decrease in the meteorologically driven PM2.5 con-
centration. Additionally, the second and third key meteorological fac-
tors identified by the MLR model are shown in Figs. S2 and S4, 
respectively. These factors varied across the different areas and did not 

contribute to an increase in O3-PM2.5PD, which partly explained why the 
meteorologically driven trends in O3-PM2.5PD were relatively low, with 
values of +0.3 and − 0.19 days yr− 1 in the urban and non-urban areas 
(Fig. 6d and e), respectively. 

In the YRD region, as shown in Fig. 9, the main meteorological fac-
tors in most urban areas during the warm months from 2013 to 2020 
were T2m_max for the MDA8 O3 concentration, U500 and U10 for the 
PM2.5 concentration, and T2m_max and V10 for the number of O3- 
PM2.5PD. The changes in the top key meteorological factors between 
2013 and 2020 significantly contributed to the increases in the MDA8 O3 
and PM2.5 concentrations and O3-PM2.5PD over the YRD region. The 
second and third key meteorological factors influencing O3-PM2.5PD in 
the YRD region identified by the MLR model (shown in Figs. S3 and S5), 
mainly U500, SWGDN, T2m, and T2m_max, varied across the YRD re-
gion and largely contributed to the increasing trend in the meteoro-
logically driven O3-PM2.5PD. The variations in the top three key 
meteorological factors in the YRD region were instrumental in 
increasing the number of O3-PM2.5PD by 2.11 days yr− 1 in the urban 
areas and 1.5 days yr− 1 in the non-urban areas, as shown in Fig. 6f and g, 
respectively. 

Fig. 8. (a)–(c) Spatial distribution of the top meteorological factors influencing the MDA8 O3 and PM2.5 concentrations and O3-PM2.5PD in the BTH region from 2013 
to 2020, with the urban areas outlined in white. (d)–(f) Regression coefficients of the top meteorological factors with the MDA8 O3 and PM2.5 concentrations and O3- 
PM2.5PD in the MLR model. (g)–(i) Trends in the top meteorological factors, where the red “+” and blue “-” symbols indicate increasing and decreasing trends, 
respectively, from 2013 to 2020. 
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Fig. 9. Same as Fig. 8 but for the YRD region.  

Fig. 10. Differences in O3-PM2.5PD (grey bordered column, days), MDA8 O3 concentrations during O3-PM2.5PD (green dotted line, ppb), and PM2.5 concentrations 
during O3-PM2.5PD (pink dotted line, μg m− 3) between the experiments with reductions of 25 % and 50 % in NH3, SO2, NOx, and VOC emissions and the CTRL 
simulation experiment from April–October 2020 averaged over the urban and non-urban areas in the BTH and YRD regions. 

H. Dai et al.                                                                                                                                                                                                                                      



Science of the Total Environment 924 (2024) 171687

10

3.5. Impact of anthropogenic emissions on O3-PM2.5PD 

Apart from meteorological influences, anthropogenic emissions play 
an important role in determining the occurrence of O3-PM2.5PD. 
Therefore, we investigated the effect of reducing the emissions of 
various pollutant precursors on O3-PM2.5PD, and the detailed design of 
the experiments is described in Sec. 2.4.3. 

Fig. 10 shows the differences in the number of O3-PM2.5PD and the 
MDA8 O3 and PM2.5 concentrations during O3-PM2.5PD between the 
eight emission reduction experiments and the CTRL simulation experi-
ment, averaged over the urban and non-urban areas of the BTH and YRD 
regions. The distributions in the BTH and YRD regions are shown in 
Figs. S6–S8. In the BTH region, the reduction in VOC emissions signifi-
cantly contributed to the decrease in O3-PM2.5PD, with a greater effect in 
the urban areas, largely through reducing MDA8 O3 levels. In the YRD 
region, VOC abatement primarily influenced the reduction in O3- 
PM2.5PD in the urban areas, while NOx abatement was more effective in 
the non-urban areas. The different impacts of emission reductions on O3- 
PM2.5PD in the different areas could be attributed to the nonlinear re-
sponses of MDA8 O3 to NOx and VOCs, as shown in Figs. S6 and S7, 
respectively, where the spatial patterns of the effects of emission re-
ductions on MDA8 O3 agreed with those of the effects on O3-PM2.5PD. In 
contrast, PM2.5 demonstrated a uniform response to emission reductions 
in both the urban and non-urban areas in the BTH and YRD regions, as 
shown in Fig. S8. 

Furthermore, O3-PM2.5PD often exhibited intense atmospheric oxi-
dization (Qin et al., 2021; Dai et al., 2023), and the spatial distribution 
of the OH concentrations (an important atmospheric oxidant) under the 
different emission reduction scenarios is shown in Fig. S9. Notably, the 
reduction in NOx (VOC) emissions led to an increase (decrease) in the 
OH concentration in the urban areas, while the effect was the opposite in 
the non-urban areas. This difference in the OH response to NOx and VOC 
emissions between the urban and non-urban areas was caused by their 
distinct VOC/NOx sensitivities. In urban areas, where the VOC/NOx 
ratio is usually low, OH primarily reacts with NOx (NO2 + OH + M → 
HNO3 + M). Thus, reducing NOx leads to an increase in OH. Conversely, 
in non-urban areas, which typically exhibit higher VOC/NOx ratios, OH 
mainly reacts with VOCs (RH + OH → R• + H2O, RCHO + OH → RCO +
H2O), resulting in an increase in OH with a concurrent decrease in VOCs. 
Overall, in the BTH and YRD urban areas, reducing VOC emissions not 
only decreased the occurrence of O3-PM2.5PD but also decreased the 
atmospheric oxidizing capacity. Notably, in the non-urban areas, 

particularly in the YRD region, reducing NOx emissions yielded a similar 
synergistic benefit. 

Since the varied responses of O3-PM2.5PD to reducing the emissions 
of different precursors could be primarily attributed to the distinct 
sensitivities of O3, the differences in the hourly O3 concentrations during 
O3-PM2.5PD between the eight emission reduction experiments and the 
CTRL simulation experiment are shown in Fig. 11. The hourly O3 con-
centrations were significantly influenced by the reductions in NOx and 
VOC emissions. VOC emission reduction consistently lowered O3 levels 
throughout the day, especially the high daytime O3 concentrations in the 
urban areas. However, the decrease in night-time O3 concentrations was 
greater in the non-urban areas than in the urban areas, largely due to the 
more notable NOx titration effect in the urban areas. In contrast, NOx 
emission reduction decreased O3 concentrations only during the day, 
while O3 levels increased at night. Enhancing NOx emission reduction (e. 
g., by 50 %) extended and amplified the reduction in daytime O3 con-
centrations. However, the mitigating effect of NOx emission reduction 
on the high daytime O3 concentrations still remained less significant 
than that of VOC emission reduction, particularly in the urban areas of 
the BTH region, where a VOC reduction effectiveness of only approxi-
mately 29 %–60 % could be achieved. 

Thus far, we have examined the individual impacts of reducing the 
emissions of different precursors on O3-PM2.5PD and found that re-
ductions in NOx and VOC emissions play important roles. Therefore, the 
effect of reducing NOx and VOC emissions on O3-PM2.5PD simulta-
neously was further examined, and the results are shown in Fig. 12. The 
synergistic reduction in NOx and VOC emissions exerted a greater 
impact on the decrease in O3-PM2.5PD than the reduction in NOx or VOC 
emissions only, except in the BTH urban areas under the scenario with a 
25 % emission reduction, which indicated a higher sensitivity to VOC 
reduction. However, a 50 % reduction in both NOx and VOC emissions 
could significantly decrease O3-PM2.5PD in all urban and non-urban 
areas in the BTH and YRD regions, resulting in decreases of 62.2 % 
and 72.4 % in the BTH urban and non-urban areas, respectively, and 
58.8 % and 72.6 % in the YRD urban and non-urban areas, respectively. 
Thus, the impact of the synergistic reduction in NOx and VOC emissions 
on O3-PM2.5PD was greater than that of reducing NOx or VOC emissions 
only, especially in the non-urban areas. These results highlight the sig-
nificance of the integrated management of NOx and VOC emissions in 
both urban and non-urban areas. 

Fig. 11. Difference in the hourly O3 concentration (ppb) on O3-PM2.5PD between the experiments with reductions of 25 % and 50 % in VOC, NOx, SO2, and NH3 
emissions and the CTRL simulation experiment from April–October 2020 averaged over the urban and non-urban areas of the (a-b) BTH and (c-d) YRD regions. The 
yellow boxes highlight intervals of a decrease in O3 concentrations by reducing NOx emissions. 
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4. Conclusions 

In this study, we conducted multiple sensitivity experiments using 
the nested-grid version of the GEOS-Chem model to assess the impacts of 
meteorological factors and anthropogenic emissions on the frequency 
and intensity of O3-PM2.5PD in the urban and non-urban areas of the 
BTH and YRD regions from April–October 2013 to 2020. The model 
generally captured the daily variations in the observed MDA8 O3 and 
PM2.5 concentrations and reproduced the observed number of O3- 
PM2.5PD relatively well, with 369 (377) days of observed (simulated) 
O3-PM2.5PD in the BTH region and 223 (297) days in the YRD region, 
respectively, summed over April–October 2013–2020. The simulated 
numbers of O3-PM2.5PD in the urban (non-urban) areas of the BTH and 
YRD regions were 424.8 (330.1) and 309.3 (286.9) days, respectively, 
suggesting that pollution in non-urban areas should also be analysed. 

From 2013 to 2020, the simulated trends in O3-PM2.5PD in the urban 
(non-urban) areas of the BTH region were − 0.14 (− 0.15), − 0.99 
(− 1.23), and +0.30 (− 0.19) days yr− 1 owing to changes in both emis-
sions and meteorological factors, emissions only, and meteorology only, 
respectively. The corresponding trends in the urban (non-urban) areas of 
the YRD region were +1.18 (+0.81), − 1.47 (− 1.92), and +2.11 (+1.50) 
days yr− 1, respectively. These findings suggest that meteorological 
changes exerted a slight impact on the trend in O3-PM2.5PD in the BTH 
region and a significant impact on the increasing trend in O3-PM2.5PD in 
the YRD region from 2013 to 2020, while strict emission reductions 
since 2013 have led to decreasing trends in anthropogenic emission- 
driven O3-PM2.5PD in both the BTH and YRD regions, mostly due to 
the notable reductions in PM2.5 concentrations. 

We further analysed the influence of the key meteorological pa-
rameters on O3-PM2.5PD and identified the main meteorological drivers 
by utilizing the MLR model. From 2013 to 2020, in most BTH areas, 
thermodynamic parameters (increase in T2m and T2m_max) were the 
main drivers of elevated MDA8 O3 and O3-PM2.5PD levels, while vari-
ations in the humidity (decrease in RH1000) and boundary layer dy-
namics (increase in PBLH) accounted for the reduction in PM2.5 
concentrations. However, in most YRD areas, an increase in T2m_max 
affected MDA8 O3 and O3-PM2.5PD levels, while zonal winds (U500 and 
U10) played an important role in affecting PM2.5 concentrations, which 
drove a notable increase in O3-PM2.5PD in the YRD region. 

In addition, we examined the impact of reductions the emissions of 

different pollutant precursors (NH3, SO2, NOx, and VOC) on O3-PM2.5PD 
in 2020 and found that VOC reductions largely reduced O3-PM2.5PD and 
the atmospheric oxidizing capacity in the urban areas, while NOx re-
ductions more notably influenced these variables in the non-urban 
areas, especially in the YRD region. VOC reductions could significantly 
lower urban O3 peaks, while NOx reductions could more effectively 
reduce non-urban O3 peaks. Furthermore, a 50 % reduction in both NOx 
and VOC emissions could more notably impact O3-PM2.5PD, resulting in 
decreases of 62.2 % and 72.4 % in the BTH urban and non-urban areas, 
respectively, and 58.8 % and 72.6 % in the YRD urban and non-urban 
areas, respectively. 

Overall, the meteorological conditions from 2013 to 2020, such as 
increasing temperatures, significantly amplified the occurrence of O3- 
PM2.5PD, especially in the BTH and YRD urban areas. Under these 
pollution-favouring meteorological conditions, emission reductions 
were more critical for controlling O3-PM2.5PD. Although meteorological 
conditions and emission sources vary across the different regions, the 
joint control of NOx and VOC emissions in both urban and non-urban 
areas is essential to mitigating O3-PM2.5PD, which have important im-
plications for air quality management. Results from this study may have 
some limitations and uncertainties. Firstly, model results are dependent 
on anthropogenic emissions inventories that underlie all the simula-
tions. Secondly, the simulated effectiveness of emission reductions is 
influenced by the capability of the GEOS-Chem model in simulating 
chemical species. Previous studies have shown that the model tends to 
overestimate ammonium levels (Dang and Liao, 2019; Gong and Liao, 
2019; Dai et al., 2023). Future studies can use multiple models to pro-
vide more comprehensive results. 
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Fig. 12. Frequency of O3-PM2.5PD (days) in the CTRL simulation experiment 
(grey bars) and changes in O3-PM2.5PD in the eight sensitivity experiments 
compared to those in the CTRL simulation experiment (shaded blue bars) from 
April–October 2020 in the urban and non-urban areas of the BTH and YRD 
regions. The bold italics indicate the percent changes (%) relative to the CTRL 
simulation experiment. 
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