
1. Introduction
Chemical transport models (CTMs) have been widely used to interpret observed changing air quality and assess 
the efficacy of air quality regulations (Coggon et al., 2021; K. Li et al., 2021; Lu et al., 2021). However, despite 
advances in CTMs, it is still challenging to accurately simulate urban air quality due to uncertainties in physical 
and chemical processes (J. Chen et al., 2022; K. Li et al., 2019b), emission inventories (Jiang et al., 2022; Zheng 
et al., 2017) and coarse model resolutions (Benavides et al., 2021; Schaap et al., 2015). These model limitations 
have particularly large negative impacts on simulations of urban air quality in countries with high urbaniza-
tion. For example, significant reductions in NOx emissions (Jiang et al., 2022) are supposed to have led to the 
mitigation of O3 pollution in inland China in recent years (X. Chen et al., 2021; K. Li et al., 2019a; Y. Liu & 
Wang, 2020; Z. Liu et al., 2021), but the prediction conflicts with the observed urban O3 increase.
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Recent advances in data-driven artificial intelligence techniques provide a new way to investigate air quality 
changes. For example, Zhong et al. (2021) constructed hourly gridded networks of fine particulate matter (PM2.5) 
in China; T.-L. He et al. (2022) showed the capability of a deep learning (DL) model to predict surface O3 in 
North America; and Han et al. (2022) exhibited good skill of a DL model to predict surface carbon monoxide 
(CO) in China. However, while artificial intelligence methods demonstrate good prediction capacity, their capa-
bility to explain the mechanism of observed air quality changes is uncertain. Can artificial intelligence methods 
provide new insights for air quality regulations as a supplement to CTM-based analysis to provide additional 
guidance for effective regulatory policies to control urban air pollution?

Similar to China, effective emission regulations have been employed to control tropospheric NO2 and O3 concen-
trations in the United States (US) (Chang et al., 2017; Jiang et al., 2022; Miyazaki et al., 2017). In this study, 
we developed a hybrid DL model based on convolutional neural networks (CNNs) and long short-term memory 
(LSTM) neural networks to evaluate urban O3 responses to NOx changes in China and the US over 2015–2020. 
The O3 responses predicted by the DL model are further compared with the data-based lognormal fit approach (X. 
Chen et al., 2021) and a photochemical box model (X. Liu et al., 2019; Xue et al., 2013, 2016), as well as GEOS-
Chem CTM with 0.5° × 0.625° horizontal resolution. The comparative analysis by integrating various data- and 
model-based methods over two continents with different environmental, social, and economic developments can 
provide helpful information for making more effective regulatory policies to control urban air pollution globally.

2. Methodology and Data
2.1. MEE and AQS Surface NO2 and O3 Measurements

We use surface in situ hourly NO2 and O3 concentration data from the China Ministry of Ecology and Envi-
ronment (MEE, https://quotsoft.net/air) and US Environmental Protection Agency Air Quality System (AQS, 
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw) monitoring networks for the period 2015–2020. 
Concentrations were reported by the MEE in units of ug/m 3 under standard temperature (273 K) until 31 August 
2018. This reference state was changed on 1 September 2018 to 298 K. We converted the O3 and NO2 concen-
trations to ppb and rescaled the postAugust 2018 concentrations to the standard temperature (273 K) to maintain 
consistency in the trend analysis. Following K. Li et al. (2020), O3 and NO2 observations over all stations, includ-
ing those with partial records, are used in our analysis because of the limited influence on the derived O3 trends 
(K. Li et al., 2020).

2.2. The Hybrid DL Model

As shown in Figure 1, the hybrid DL model is a combination of CNN and LSTM. The convolutional layers and 
max-pooling layers on the left side form the encoder for extracting features from the input data. The encoding 
process not only reduces the resolution of features but also compresses the high-resolution information into latent 
vectors that flow through the hidden layers. The decoder on the right side reconstructs the compressed latent 
features to high resolution through transposing convolution and upsampling layers. We add residual connections 
to the model, which can forward the high-resolution information to the decoder, contributing to the accuracy of 
model localization and speeding up the convergence of the training process. We use the squared error loss func-
tion. Since the model is a supervised architecture, the summertime maximum daily 8-hr average (MDA8) O3 from 
the MEE and AQS monitoring networks are used as true values in the training process. The model obtains the 
predictions by forward propagation during each iteration and then iteratively updates the weights in the network 
using the backward propagation algorithm (LeCun et al., 1989; Rumelhart et al., 1986). In addition, we employ 
the adaptive gradient Adam optimizer, with high computational efficiency and low memory requirements, which 
can also accelerate the convergence of the cost function. Here are the major hyperparameters of the model: learn-
ing rate 0.0001; batch size 50; epochs 400; early stopping patience 20.

The input variables include nine meteorological variables (0.5° × 0.625° horizontal resolution) from Modern-Era 
Retrospective analysis for Research and Applications, Version 2 (MERRA-2): sea level pressure (SLP), surface 
incoming shortwave flux (SWGDN), surface temperature (TS), 2-m air temperature (T2M), 10-m eastward wind 
(U10M), 10-m northward wind (V10M), 2-m specific humidity (QV2M), total precipitation (PRECTOT) and 
total cloud area fraction (CLDTOT); and NO2 concentrations from the MEE and AQS networks. The daily mete-
orological variables are obtained by averaging hourly data within 12:00–19:00  local time. The observed NO2 
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and O3 concentrations are interpolated into GEOS-Chem grids and processed as daily averages to match the 
spatial and temporal resolution of the input meteorological variables. The grids without air quality stations are 
defined as blank data in the model training. To enhance the efficiency and stability of neural network training, 
we normalize the input meteorological variables so that each variable has a similar range of values. The normali-
zation is performed specifically by subtracting the mean from the original data and then dividing by the standard 
deviation so that the processed data are approximated to the standard normal distribution. The data from 2015 to 
2018 are used as the training set to train the model, and the data from 2019 to 2020 are employed to evaluate the 
performance of the model as a test set.

2.3. GEOS-Chem Model Simulations

The GEOS-Chem CTM (http://www.geos-chem.org, version 12-8-1) is driven by assimilated meteorological data 
of MERRA-2 with nested 0.5° × 0.625° horizontal resolution. The GEOS-Chem model includes fully coupled 
O3-NOx-VOC-halogen-aerosol chemistry. The chemical boundary conditions are updated every 3  hr from a 
global simulation with 4° × 5° resolution. Emissions in GEOS-Chem are based on the Harvard-NASA Emission 
Component (HEMCO). Global default anthropogenic emissions are from the Community Emissions Data System 
(Hoesly et al., 2018). Regional emissions are replaced by Multiresolution Emission Inventory for China (MEIC) 
in China, MIX in other regions of Asia (M. Li et al., 2017) and NEI2011 in the US. The total anthropogenic NOx 
and VOC emissions in the MEIC and NEI2011 inventories are further scaled to obtain the annual emissions in 
2019 following X. Chen et al. (2021). Open fire emissions are from the Global Fire Emissions Database (van der 
Werf et al., 2010). Natural emissions of O3 precursors, including NOx from lightning and soil and VOCs from 
vegetation, are calculated on the basis of the assimilated MERRA-2 meteorology. The biogenic emissions of 
VOCs are calculated according to the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) 
(Guenther et al., 2006).

2.4. Photochemical Box Model

The photochemical box model (OBM) is configured with master chemical mechanisms (MCM v3.3.11, http://
mcm.york.ac.uk/home.htt). The MCM-OBM model was designed to investigate the atmospheric oxidation 
processes of VOC species (X. Liu et al., 2019; Xue et al., 2013, 2016). The concentrations of sulfur dioxides 
(SO2), CO, NOx, and VOC, as well as meteorological parameters (atmospheric pressure, temperature, and relative 
humidity) from two monitoring sites in Chengdu city (in the Sichuan Basin [SCB]), were used as constraining 
parameters in the model. The MCM-OBM model simulations start at 12:00 local time for 8 hr, by inputting the 

Figure 1. A hybrid deep learning model used in this paper. Nine meteorological variables and NO2 observations from Ministry of Ecology and Environment and Air 
Quality System are used as input variables and the output is the MDA8 ozone. Both have 144 pixels in the latitudinal dimension and 288 pixels in the longitudinal 
dimension. The orange boxes represent 3 × 3 convolutional layers with ReLU as the activation function. The red boxes represent 2 × 2 max-pooling layers that can 
extract the most critical features. The blue circle represents 3 stacked long short-term memory cells, which take flattened latent vectors as input. The gray box is a 
reshaping layer. The light blue box is a transposed convolutional layer for upsampling the latent vectors. Light orange boxes after each transpose convolutional layer 
represent the features transferred from the encoder by the skip connections. The arrows on the top represent the direction of the skip connections.
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observed O3 concentration at the initial time. MCM-OBM simulations have been widely used to calculate the 
relative incremental reactivity to describe the response of O3 to individual precursors (Z. He et al., 2019; J. Li 
et al., 2018; Tan et al., 2018; Wang et al., 2020).

3. Results
3.1. Surface O3 Simulated by the DL Model

The hybrid DL model in this work is an autoencoder with the latent space represented by three LSTM cells 
(Figure 1). The input variables include nine meteorological variables as well as NO2 concentrations from MEE 
and AQS monitoring networks. The optimization of the model is supervised by the “ground truth,” which is the 
summertime MDA8 O3 concentrations measured by the MEE and AQS networks. Only urban stations are consid-
ered in this work, and background stations are excluded. The DL model was trained to be a CTM-independent 
emulator with the NO2-O3 relationship observed by the MEE and AQS networks. Due to the lack of widely 
distributed long-term VOC observation data sets, VOC observations were not included in the model training by 
assuming limited changes in anthropogenic VOC emissions in the 6-year period because of their flatter trends 
with respect to changes in NOx emissions (H. He et al., 2020; M. Li et al., 2019). We also assume limited influ-
ences from land usage changes on surface O3 in the 6-year period. As the variabilities in biogenic VOC emissions 
are modulated by meteorological conditions such as temperature and solar radiation (Guenther et al., 2006), it is 
expected that our DL model, driven by meteorological variables, can predict the impact of biogenic VOC varia-
bilities on surface O3.

The observed surface MDA8 O3 in the training period (2015–2018) exhibits higher O3 in N. China and lower 
O3 in S. China and E. US, which was well captured by our DL model (Figure S1 in Supporting Information S1). 
The DL model also captures the daily variabilities in summertime MDA8 O3 concentrations over these three 
domains during the training period, with a Pearson correlation coefficient (R) larger than 0.95 (Figure S2 in 
Supporting Information  S1). Furthermore, we successfully simulated the summertime MDA8 O3 in the test 
period (2019–2020) using the DL model (Figure 2), with correlation coefficients slightly lower than those in the 

Figure 2. (a) Summertime MDA8 O3 in 2019–2020 from the Ministry of Ecology and Environment urban stations. The station-based measurements are averaged and 
re-grided to 0.5° × 0.625° resolution. (b) Simulated O3 concentrations by the deep learning (DL) model. (c, d) Differences and Pearson correlation coefficients between 
DL and observed O3. (e–h) Same as panels (a–d), but for (e) United States by using Air Quality System O3 observations. The black boxes in panel (a) define the 
domains for N. China, S. China, and the Sichuan Basin (SCB). The star in panel (a) represents the location of Chengdu City in the SCB.
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training period (Figure S1 in Supporting Information S1). As shown in Figure 3, the DL-based daily O3 concen-
trations (red lines) in 2019–2020 also exhibit good agreement with observations (black lines). The correlation 
coefficients between DL-based and observed O3 in the test period are 0.87, 0.89, and 0.78 for N. China, S. China, 
and E. US, respectively.

Table S1 in Supporting Information  S1 provides more information to evaluate the model performance. The 
normalized mean biases are 0.2%, 0.2%, and −5.2% in the training period, and −6.6%, −8.9%, and −4.8% in 
the test period for N. China, S. China, and E. US, respectively. The root mean square error are 2.14, 1.77, and 
2.68 ppb in the training period, and 6.85, 5.45, and 3.50 ppb in the test period for N. China, S. China, and E. US, 
respectively. Furthermore, we find better model performance in China than in the E. US, for example, the slopes 
are 0.99, 0.73, and 0.58 in 2019–2020 for N. China, S. China, and E. US, respectively, which could be associ-
ated with the smaller number of observation stations in the US. It should be noted that our DL model validation 
replies to 20% (US) and 10% (China) O3 observations in 2015–2018. Surface O3 observations in 2019–2020 are 
independent observations, which are untouched in the model training, and thus, we can expect consistent model 
performance outside the period of 2015–2020.

Figure 3. Daily variabilities of MDA8 O3 from observations and simulations. (a, b) N. China and S. China (Ministry of Ecology and Environment, deep learning [DL], 
and GEOS-Chem) (c) E. United States (Air Quality System, DL, and GEOS-Chem). The domain definitions are shown in Figure 2. The numbers (and numbers in 
parentheses) of R and root mean square error (RMSE) represent correlation coefficient and RMSE for 2019, and 2019–2020, respectively.
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3.2. Consistent O3 Responses in Data-Based Methods

Our DL model is driven by the inputted NO2 concentrations and meteorological variables. We can thus predict 
the responses of surface O3 to changes in NOx emissions by adjusting the inputted NO2 concentrations, as the 
responses of NO2 concentrations to changes in NOx emissions are broadly linear (Jiang et al., 2022). Figure 4a 
shows the summertime NO2 concentrations from the MEE stations in 2019, with the same 8-hr periods as MDA8 
O3. Increasing the 2019 summertime NO2 concentrations by 20%, the DL model predicts a widespread decrease 
in surface O3 over N. China inland provinces (Figure 4b). The decreases in NO2 concentrations before 2019 have 
thus led to increases in summertime surface O3 over N. China inland provinces. The 2018–2020 Chinese Clean 
Air Action plan called for a 9% decrease in NOx emissions (CSC, 2018), and thus, Figure 4c predicts surface O3 
changes driven by a 10% decrease in NO2 concentrations. Continuous NOx controls, as shown in Figure 4c, are 
predicted to result in the exacerbation of O3 pollution over N. China inland provinces. Similarly, Figure 5a shows 
the summertime NO2 concentrations from the AQS stations in 2019, which are much lower than NO2 concentra-
tions in China. The DL model predicts the widespread distribution of transitional regimes over E. US (i.e., slight 
red or blue shown in Figures 5b and 5c).

In a recent study, X. Chen et al. (2021) evaluated O3 nonlinear chemistry regimes via lognormal fits of O3 and NO2 
observations. Following X. Chen et al. (2021), Figure 6a shows the summertime O3-NO2 relationship over the 
SCB in 2014–2020. The data (dots) are regional averages of MDA8 O3 and NO2 concentrations, binned into 1 ppb 
NO2 increments. Figure 6a indicates a VOC-limited regime over the SCB: reductions in NO2 concentrations (d 

Figure 4. (a) Observed summertime surface NO2 concentrations from the Ministry of Ecology and Environment (MEE) stations in 2019. The station-based 
measurements are averaged and re-grided to 0.5° × 0.625° resolution. The 8-hr range of surface NO2 is selected according to the time range of MDA8 O3. (b, c) 
Predicted responses of MDA8 O3 in 2019 to NO2 changes by the deep learning model. (d, e) Same as panels (b, c), but from analysis based on the lognormal fit. (f) 
Surface NO2 concentrations from GEOS-Chem model standard simulation (Run 1), adjusted using the ratios of NOy/NO2 to consider the influences from reactive 
oxidized nitrogen compounds in the chemiluminescence analyzers. (g, h) Responses of MDA8 O3 in 2019 to NOx emission changes from GEOS-Chem model. (i–n) 
Similar to panels (f–h), but for sensitivity simulations by enhancing NOx emissions over urban grids (Run 2) and urban + regional background (Run 3, see details 
in Supporting Information S1). The modeled NO2 and O3 are sampled at the locations and times of MEE surface measurements, and then averaged and re-grided to 
0.5° × 625° resolution.
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NO2) have led to an increase in surface O3 (d O3) in the SCB by approximately 7 ppb in 2014–2020 (based on the 
lognormal fitting line). This result is consistent with the observation-based OBM model with inputs of NOx and 
VOC concentrations and meteorological parameters from observations: the OBM model indicates increases in 
O3 with 60%–80% reductions in NOx concentrations in Chengdu city (in the SCB) in 2017 and 2018 (Figure 6b). 
Following the approach shown in Figure 6a, lognormal fitting lines are produced for each 0.5° × 0.625° grid, 
which allows us to analyze O3 nonlinear chemistry regimes in 2019. We find broadly good consistency between 
the DL-based prediction and the lognormal fit over China (Figures 4b and 4c vs. Figures 4d and 4e) and the US 
(Figures 5b and 5c vs. Figures 5d and 5e).

3.3. Surface NO2 and O3 Simulated by the GEOS-Chem Model

Figure 7 (blue lines) shows the daily variabilities in the modeled (GEOS-Chem) and observed NO2 (based on the 
8-hr periods as MDA8 O3) in 2019 over China and the US. Here the modeled NO2 are sampled at the locations 
and times of NO2 observations and are adjusted using the ratios of NOy/NO2 to consider the influences from 
reactive oxidized nitrogen compounds in the chemiluminescence analyzers on the observed NO2 concentrations 
(Lamsal et al., 2008; F. Liu et al., 2018), where NOy = NO2 + ΣAN + 0.95 × PAN + 0.35 × HNO3 and ΣAN is the 
sum of all alkyl nitrate concentrations. We find dramatic underestimations in the modeled NO2 concentrations: 
5.2 and 7.8 ppb (N. China), 2.7 and 6.3 ppb (S. China), and 2.0 and 3.2 ppb (E. US) from GEOS-Chem simula-
tions and observations from MEE and AQS stations, respectively. Figures 4f and 5f further show the distributions 
of summertime surface NO2 concentrations from GEOS-Chem in 2019 over China and the US, respectively. The 
sampled NO2 concentrations (Figure 4f) are comparable to the surface NO2 observations (Figure 4a) over the NCP 
and Yangtze River Delta but lower in the rest of China. It seems that our model simulations (with 0.5° × 0.625° 
resolution) tend to underestimate urban NO2 concentrations over areas with low regional population density.

Here we further investigate the consistency between modeled and observed daily variabilities of MDA8 O3. As 
reported in recent studies (Guo et al., 2018; Kerr et al., 2019; McDonald et al., 2018), we find a significant over-
estimation of surface MDA8 O3 (blue line in Figure 3c) with respect to the AQS O3 observations over the US in 
2019. The correlation coefficient between the modeled and observed MDA8 O3 is as low as 0.49 over US in the 
CTM, which is much lower than the correlation coefficient in the DL model (0.87). However, we find comparable 
simulation capability of O3 daily variabilities between GEOS-Chem and DL models in China: the correlation 

Figure 5. Same as Figure 4, but for E. United States by using Air Quality System observations.
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coefficients between the modeled and observed MDA8 O3 are 0.79 and 0.88 
(N. China) and 0.90 and 0.87 (S. China) by GEOS-Chem and DL, respec-
tively. As shown in Figure S3a in Supporting Information S1, the modeled 
regional background O3 are comparable with urban O3 observations in China; 
the modeled regional background O3 is higher than the urban O3 observations 
in the US (Figure S3b in Supporting Information S1). It should be noted that 
GEOS-Chem simulations are only performed in 2019 in this work to avoid 
the complicated perturbations of the 2019 novel coronavirus (COVID-19) on 
NOx and VOC emissions.

3.4. O3 Responses Simulated by the GEOS-Chem Model

Can the underestimated urban NO2 concentrations pose a potential barrier to 
simulating urban O3 responses? Figures 4g and 4h and Figures 5g and 5h show 
the model-based responses of surface O3 to perturbations in anthropogenic 
NOx emissions. We find different responses of O3 to NO2 changes between 
data- and model-based methods over both continents: VOC-limited regimes 
(blue in Figures 4b and 4d) over N. China and weak NOx-limited regimes 
(slight red in Figures 4b and 4d) over S. China in the data-based methods, in 
contrast to widespread distributions of strong NOx-limited regimes in GEOS-
Chem (red in Figure 4g); transitional regimes over the eastern US (slight red 
or blue shown in Figures 5b and 5d) in the data-based methods, in contrast 
to widespread distributions of strong NOx-limited regimes in GEOS-Chem 
(red in Figure 5g). Furthermore, as shown in Figure S4 in Supporting Infor-
mation S1, the correlations in the grid-based O3 responses between the DL 
and lognormal fit methods over E. China are 0.47 (Figure S4a in Supporting 
Information S1, NO2 concentration decrease by 10%) and 0.42 (Figure S4b in 
Supporting Information S1, NO2 concentration increase by 20%), in contrast 
to −0.43 and −0.45 between DL and GEOS-Chem simulations.

GEOS-Chem sensitivity simulations (Run 2, Table 1) adjust anthropogenic 
and soil NOx emissions over urban grids (i.e., grids have MEE or AQS urban 
stations) using the ratios of observed/modeled NO2. The adjustment of NOx 
emissions over urban grids led to enhancements of sampled NO2 concentra-
tions in Figures 4i and 5i; however, they are still noticeably lower than obser-
vations (Figures 4a and 5a, also shown in Figure 7). Consequently, we further 
adjust regional background NOx emissions based on the ratios of averaged 
observed/modeled NO2 within neighboring grids (Run 3). As shown in 
Figures 4l and 5l (also shown in Figure 7), the sampled NO2 concentrations 
in Run 3 match better with the observed urban NO2 concentrations. It should 
be noted that the adjustments of NOx emissions are designed to cover the 

underestimated urban NO2 concentrations, which cannot be explained as an underestimation of NOx emissions: it 
is unlikely that NOx emissions in the emission inventory should be enhanced by 400% to match observations as 
shown in Figure S5 in Supporting Information S1.

The consistent NO2 concentrations between the observations and sensitivity simulations lead to improvements in 
the modeled urban O3 responses in China. For example, (Figure S6 in Supporting Information S1), the DL- and 
lognormal fit-based analyses predict −0.8 ± 0.8 ppb (Figure 4b) and −1.5 ± 1.5 ppb (Figure 4d) decreases in 
surface O3 in the SCB in 2019, respectively, due to a 20% increase in anthropogenic NOx emissions; in contrast, 
the modeled responses are increases in surface O3 by 2.8 ± 0.2 ppb (Figure 4g), 1.2 ± 1.1 ppb (Figure 4j) and 
a decrease of −0.2 ± 1.2 ppb (Figure 4m). However, the enhanced NO2 concentrations have a weaker influence 
on the modeled urban O3 evolution in the US (Figure 5), and the model-based O3 chemical regimes still show a 
large discrepancy with the reported transitional or VOC-limited regimes in recent studies (H. He et al., 2020; Jin 
et al., 2020). In a recent study, Zhu et al. (2023) suggests larger relative contributions of regional background O3 
to urban surface O3 observations in the US than in China, which could be associated with the weaker influence 
of scaling NOx emissions.

Figure 6. (a) Observed summertime O3-NO2 relationships from Ministry of 
Ecology and Environment stations with both O3 and NO2 measurements. The 
dots represent regional averages of MDA8 O3 and NO2 concentrations, binned 
into 1 ppb NO2 increments. The 8-hr range of surface NO2 measurements is 
selected according to the time range of MDA8 O3. The blue line is lognormal 
fitting line. The error bars represent standard error. The numbers (0–9) 
represent the summertime mean O3 and NO2 abundances, and a number 
itself corresponds a year with the year's last digit during 2014–2020. (b) 8-hr 
averaged responses of O3 to NOx changes at the SL (103.93°N, 30.58°E, 
20170801–20170815) and JPJ (104.05°N, 30.66°E, 20180601–20180610) 
sites in Chengdu, Sichuan Province. The simulations are performed using 
an OBM model with inputs of SO2, CO, NOx, and VOC concentrations and 
meteorological parameters from observations. Positive responses represent 
increases in O3 within 8 hr (12:00–19:00 local time) due to a decrease in NOx, 
indicating a VOC-limited regime.
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3.5. Possible Sources of the Inconsistency in the Derived O3 Responses

Both DL and photochemical box models require the input of atmospheric composition concentrations (NO2 
in the DL; NOx and VOC in the photochemical box model) and meteorological variables at the local scale 
(i.e., at the location of in situ observation stations). Instead of calculating the detailed VOC-related chemical 
processes,  the  DL model simulates the impact of NO2 on O3 concentrations by assuming the mean states of 

Figure 7. Daily variabilities of NO2 (based on the 8-hr periods as MDA8 O3) from observations and simulations. (a, b) N. China and S. China (Ministry of Ecology and 
Environment and GEOS-Chem) (C) E. United States (Air Quality System and GEOS-Chem).
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anthropogenic VOC emissions in 2015–2020. The lognormal fit approach is a simplified version of the DL 
model that further assumes the mean states of meteorological variables in 2015–2020. Consequently, the three 
data-based methods have consistent mechanisms: they are all driven by atmospheric composition concentrations 
and meteorological variables at the local scale, despite more assumptions of mean states being considered in the 
DL and lognormal fit approaches. However, we may not expect the same accuracy between the DL and photo-
chemical box models because of the assumption of mean states of anthropogenic VOC emissions.

We find noticeable differences between data-based methods and GEOS-Chem simulation. First, the horizontal 
resolution (0.5°  ×  0.625°) in our GEOS-Chem simulation could be too coarse to exactly simulate urban air 
quality at the local scale. For example, Benavides et al. (2021) compared the impacts of diesel NOx emissions 
on urban NO2 concentrations with both mesoscale (4 and 1 km resolutions) and street-scale models, and found a 
noticeable underestimation in the mesoscale model. Furthermore, regional transport plays a key role in GEOS-
Chem simulations but does not affect data-based methods. For example, Figure S7a in Supporting Information S1 
shows the impact of NOx emission adjustment over urban grids (Run 2, Table 1) on regional background NO2 
concentrations, which leads to an increase in background NO2 concentrations in the SCB by 2.05 ppb; Figure S7b 
in Supporting Information S1 further shows the impact of regional background NOx emission adjustment (Run 
3, Table 1) on urban NO2 concentrations, which leads to an increase in urban NO2 concentrations in the SCB by 
2.56 ppb. In addition, uncertainties in physical, chemical processes and emission inventories (Jiang et al., 2022; 
K. Li et al., 2019b) could further affect the accuracy of model simulations. Consequently, the inconsistency in 
the derived O3 responses may reflect the discrepancy in O3 regimes at different spatial scales, that is, O3 chemical 
regimes are VOC-limited at the local scale in urban centers; however, are NOx-limited at larger regional scale 
when urban and rural O3 regimes are mixed thorough grid average and regional transport. The lack of VOC 
observations in the DL model and uncertainties in physical, chemical processes and emission inventories in the 
simulations could also contribute to this inconsistency.

4. Conclusion
A comparative analysis by integrating various data- and model-based methods was presented in this work to 
investigate urban O3 responses to NOx changes in China and the US. Data-based methods, driven by atmospheric 
composition concentrations and meteorological variables at the local scale, suggest VOC-limited regimes in 
urban areas over northern inland China and transitional regimes over eastern US urban areas. In contrast, GEOS-
Chem simulations suggest strong NOx-limited regimes. This discrepancy could be partially caused by the inaccu-
rate representation of O3 precursor concentrations at the locations of urban air quality stations in the simulations 

GEOS-Chem simulations

Enhanced anthro + soil NOx (A1) anthro + soil NOx factors (A2)

Run 1 (Standard) #1(Base) N/A 1.0

#2 1.2

#3 0.9

Run 2 #1(Base) Urban grids 1.0

#2 1.2

#3 0.9

Run 3 #1(Base) Urban grids + regional backgrounds 1.0

#2 1.2

#3 0.9

Note. The scaling factors (A1) to enhance anthropogenic and soil NOx emissions over urban grids (i.e., grids have urban 
stations) and urban grids + regional background, based on the ratios between observed and modeled NO2 concentrations, 
are shown in Figure S5 in Supporting Information S1. NOx emissions over the highly industrialized NCP, YRD, and PRD 
are not adjusted.

Table 1 
GEOS-Chem Standard (Run 1) and Sensitivity (Runs 2–3) Simulations With 0.5° × 0.625° Horizontal Resolution in June–
August 2019
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associated with the coarse model resolution (0.5° × 0.625°) which cannot match the exact locations of urban air 
quality stations and regional transport of atmospheric compositions which leads to the mixing of urban and rural 
O3 regimes. The lack of VOC observations in the DL model and uncertainties in physical, chemical processes and 
emission inventories in the simulations could also contribute to this inconsistency.

The consistent NO2 concentrations between the observations and sensitivity simulations lead to better agreement 
between data- and model-based methods, for example, the DL-based analysis predicts a −0.8 ± 0.8 ppb decrease 
in surface O3 due to a 20% increase in anthropogenic NOx emissions in the SCB in 2019 (Figure 4b); in contrast, 
the modeled responses are increases in surface O3 by 2.8 ± 0.2 ppb (Figure 4g), 1.2 ± 1.1 ppb (Figure 4j), and a 
decrease of −0.2 ± 1.2 ppb in surface O3 (Figure 4m) by gradually enhancing the modeled NO2 concentrations. 
However, it should be noted that the adjustments of NOx emissions in the sensitivity simulations are designed to 
cover the underestimated urban NO2 concentrations, which cannot be explained as an underestimation of NOx 
emissions.

The results illustrated in this work indicate the potential of data-based methods as a supplement to CTMs in 
providing new insights for air quality regulations. The derived O3 responses to NOx changes are helpful for a 
better understanding of urban O3 pollution. It should be noted that the derived O3 responses in this work are 
limited by the assumption of mean states of VOC in the DL- and lognormal fit-based analyses, although VOC 
observations were considered in our OBM model. More studies are suggested in the future to investigate the 
performance of data-based methods by including a few primary VOC species. We also advise more comparative 
analyses, particularly using CTMs with higher spatial resolutions, to investigate the advantages and disadvan-
tages of data-based methods, which is critical for exploring better strategies for designing and using atmospheric 
observations.

Data Availability Statement
This analysis is supported by surface O3 and NO2 measurements provided by the China Ministry of Ecology and 
Environment (MEE, 2023) available at https://quotsoft.net/air/, US Environmental Protection Agency (AQS, 2023) 
available at https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw and a DL model (Jiang, 2022) availa-
ble at https://doi.org/10.5281/zenodo.6017278.
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