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ABSTRACT: By using an improved process-level quantification
method implemented in the WRF-Chem model, we provide a
quantitative analysis on contribution of each physical/chemical
process to PM2.5 change from before to during the COVID-19
lockdown and further identify a dominant process responsible for
inverse PM2.5 changes over the southern and northern North China
Plain (NCP). From before to during the lockdown period, the PM2.5
concentration over the southern NCP decreased by 61.0 μg m−3; a
weakened aerosol chemistry production process mainly resulting from
emission mitigation of precursors was identified to be the leading
process for the PM2.5 decrease. However, the northern NCP suffered
from an unexpected PM2.5 increase of 10.0 μg m−3, which was
primarily attributed to a weakened advection dilution process induced
by decreased wind speed. The improved process analysis method, superior to the traditional one, can be applied to any two periods
rather than two instantaneous time points, and therefore it exerts a new contribution to understand the pollution evolution
mechanism from a process-level quantitative perspective.
KEYWORDS: PM2.5, improved process analysis, opposite change, WRF-Chem, North China Plain

■ INTRODUCTION
In early 2020, China implemented nationwide restrictions on
human activities to prevent the spread of Coronavirus Disease
2019 (COVID-19). Benefitting from effective emission
reduction measures (e.g., a moratorium on industrial and
transportation activities), large reductions in sulfur dioxide
(SO2) and nitrogen oxide (NOx) were generally observed.

1,2

Although primary pollutants drastically decreased during the
COVID-19 lockdown period, haze pollution still occurred over
some regions of eastern China.3−5 Parts of the North China
Plain (NCP) even suffered from worse PM2.5 air quality
compared with the pre-lockdown period.6,7

Heavy haze pollution accompanied by countrywide reduc-
tion in anthropogenic emissions seeded doubt among the
public about the effectiveness of clean air actions and thus
triggered academic discussions on the reasons for haze
pollution or PM2.5 increases during the COVID-19 lockdown.
Possible reasons reported by previous studies included
unfavorable meteorological conditions which offset the benefits
of emissions reduction,8,9 enhanced secondary aerosol
formation due to increased oxidation capacity,7,10 and
promotion of aerosol heterogeneous chemistry owing to
anomalously high humidity.10 Despite the above reasons,
quantification on each factor’s contribution and identification
of the leading reason remain scarce, which calls for further
quantitative analysis.

Evolution of PM2.5 pollution is the combined result of
various physical and chemical processes. Process-level analysis
technique, i.e., integrated process rate (IPR) analysis, can be
applied to air quality models to separate individual
contributions of each physical/chemical process to variations
in PM2.5 concentrations.11,12 Following the definition of
process analysis by Gipson,13 traditional IPR analysis is widely
used to quantify process contributions to concentration
differences between two instantaneous time points14−18 (e.g.,
hourly changes from the previous hour to the current hour, 24-
h changes from 0:00 to 23:00).
However, in more cases, what we are concerned with is not

the process contribution to concentration difference between
two instantaneous time points (e.g., the concentration at 00:00
January 1, 2013 vs the concentration at 23:00 December 31,
2020) but rather the process contribution to mean
concentration difference between two time periods (e.g., the
impact of each process on decreased/increased PM2.5/ozone
concentrations from year 2013 to year 2020). Clearly,
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conclusions based on the mean concentration difference
between two time periods are more robust and strengthen
research significance, providing more useful suggestions for air
pollution control. However, no previous studies have
optimized the conventional IPR to examine process con-
tribution to concentration differences between two time
periods.
Here we quantified the contribution of each physical/

chemical process to PM2.5 changes from the pre-lockdown
period to the lockdown period and further identified the
dominant process responsible for the PM2.5 change, by using
an improved process-level quantification method implemented
in WRF-Chem. Particularly, this paper applied the improved
IPR to the southern and northern NCP to account for the
inverse PM2.5 changes over the two regions. The improved
process analysis method can be applied to any two periods to
quantify process contributions to changes in pollutant
concentrations, and therefore it exerts a novel contribution
to understand the mechanism of air pollution variation from a
process-level quantitative perspective.

■ MATERIALS AND METHODS
Model Configuration. The Weather Research and

Forecasting with Chemistry model (WRF-Chem) was used
to investigate PM2.5 variations in NCP before (January 1 to 21,
2020, denoted as “pre-lockdown”) and during (January 24 to
February 13, 2020, denoted as “lockdown”) the COVID-19
lockdown. Anthropogenic emissions during the pre-lockdown
and lockdown periods were adopted from Huang et al.7 and
Zheng et al.19 As shown in Figure S1, emissions of major PM2.5
precursors during the lockdown were decreased by 15.0−
45.0% compared with those during pre-lockdown, except for

limited changes in NH3 emissions. More detailed model
configurations and parametrizations are described in Text S1
and Table S1.
Improved Integrated Process Rate (IPR) Analysis.

Using a numerical technique of operator splitting, Eulerian
models solve the continuity equation in several simple ordinary
or partial differential equations representing the impact of a
certain process;20,21 therefore, the contribution of each
physical/chemical process to variations in simulated pollutant
concentrations at each time step (i.e., concentration difference
between current- and previous-time step) can be diagnosed by
a method named IPR analysis. A detailed introduction to IPR
was described in Gipson13 and Chen et al.16 Following the
definition of IPR, this method was conventionally applied to
assess contributions of physical/chemical processes to
concentration differences between two instantaneous time
points, e.g., hourly (current hour relative to previous one)
changes, 24-h (23:00 relative to 0:00) changes, and even more
general changes from instantaneous time point t1 to tn (light
gray box in Figure 1).11,12,14−18,22−26

Due to the limitation of conventional IPR which quantifies
the process contribution to concentration variation between
two instantaneous time points, we extend the applicability
scope of IPR. The improved IPR can quantify the impact of
each process on the mean concentration averaged over any
time period (light orange box in Figure 1) and calculate the
process contribution to the mean concentration difference
between any two time periods (light red box in Figure 1).
Detailed documentation of specific improvement steps for the
improved IPR can be found in Text S2. It is noted that the
essential attributes of traditional IPR and the improved one are
the same. The improved IPR is derived from the traditional

Figure 1. Simplified schematic diagram of the traditional and improved integrated process rate (IPR) analysis method. ADVE, EMIS, VMIX,
SGCV, GASC, CLDC, AERC, and WETP represent advection, primary emission, vertical mixing, subgrid convection, gas-phase chemistry, cloud
chemistry, aerosol chemistry, and wet scavenging process, respectively. C0 and C0′ are initial concentrations. Cn and Cn′ mean concentrations at time
point tn. dt is the time step. IPRn and IPRn

’ mean the combined effects of all physical and chemical processes at time point tn, which can be separated
to individual contribution of each process. Ca and Cb represent the averaged concentrations during period a and b.
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method. The key improvement and uniqueness of the
improved approach is the wider applicability because none of
previous studies quantified the process contribution to mean
concentration differences between two time periods with the
traditional method. Text S3 and Figure S2 detailedly compare
the differences in application between the traditional and
improved IPR methods.

Involved physical/chemical processes in WRF-Chem include
advection (ADVE), primary emission (EMIS), vertical mixing
(dry deposition and turbulent diffusion) (VMIX), subgrid
convection (SGCV), gas-phase chemistry (GASC), cloud
chemistry (CLDC), aerosol chemistry (AERC), and wet
scavenging (WETP). It is noted that “primary emission” here
refers to primary emission of PM2.5, excluding emissions of
PM2.5 precursors (e.g., SO2). The impacts of precursor

Figure 2. Spatial distributions of observed (circles) and simulated (shades). (a) PM2.5 concentrations before the COVID-19 lockdown, (b) PM2.5
concentrations during the COVID-19 lockdown, and (c) PM2.5 changes from before to during the COVID-19 lockdown. The normalized mean
bias (NMB), correlation coefficient (R), and index of agreement (IOA) between daily sites-averaged measurements and simulations are also shown
at the top of each panel. The black contour lines in (a) and (b) represent National Ambient Air Quality Standard grade II limit value for daily PM2.5
concentrations (i.e., 75 μg m−3). The green/pink box in (c) represents the northern/southern North China Plain with the largest PM2.5 increases/
decreases.

Figure 3. (a1−a2) Simulated PM2.5 concentrations represented by the combined effects of (b1−b2) initial concentration (C0), (c1−c2) EMIS,
(d1−d2) ADVE, (e1−e2) VMIX, (f1−f2) WETP, (g1−g2) AERC, and (h1−h2) CLDC process averaged during the pre-lockdown period (left
bar) and lockdown period (right bar) over the southern (top purple box) and northern (bottom green box) North China Plain. The PM2.5 changes
contributed by each process from the pre-lockdown period to the lockdown period are shown in positive or negative values in each panel. The
contributions of SGCV and GASC processes are not shown due to their negligible impact.
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emission on PM2.5 by secondary conversion are embodied in
chemical processes, rather than a primary emission process.
This paper applied the improved IPR to pre-lockdown and

lockdown periods, respectively, aiming to quantify contribu-
tions of each physical/chemical process to PM2.5 concen-
trations averaged over both periods and further identify the
dominant process for PM2.5 changes from pre-lockdown to
lockdown. We conducted improved IPR for both southern and
northern NCP, trying to quantitatively explain opposite PM2.5
changes over the two regions.
Observational Data. Observed meteorological variables

were available at Wyoming Weather Web (http://weather.
uwyo.edu/surface/meteorogram/seasia.shtml). Monitoring
data of PM2.5 concentrations were obtained from China
National Environmental Monitoring Center (CNEMC,
https://quotsoft.net/air/). Measurements of PM2.5 composi-
tions and oxidant hydroxyl radical (OH) were collected from
refs 29, 35, 37−42. The oxidant Ox was calculated by O3 and
NO2 (OX = O3 + NO2); the O3 and NO2 concentrations were
taken from CNEMC.

■ RESULTS AND DISCUSSION
Model Evaluation. We conducted a detailed model

evaluation in Text S4. In general, the WRF-Chem model
successfully captured the evolutions of observed meteoro-
logical parameters (Figures S3−S5), PM2.5 levels (Figures S6−
S7), PM2.5 compositions (Figure S8), and oxidant Ox (Figure
S9), as well as the changes from the pre-lockdown to lockdown
period in PM2.5 levels (Figure 2), PM2.5 compositions (Tables
S2−S4), and oxidant OH (Figure S10).
Sharp Contrasts in PM2.5 Changes over Southern

versus Northern NCP. Figure 2 shows simulated PM2.5
concentrations before and during COVID-19 lockdown
periods. Severe haze pollution swept across southern NCP
during pre-lockdown, with PM2.5 concentrations exceeding
National Ambient Air Quality Standard (i.e., 75 μg m−3) over
almost the whole southern NCP (Figure 2(a)). During
lockdown, the intensity and extent of PM2.5 pollution became
much smaller (Figure 2(b)), compared to those during pre-
lockdown. We further exhibited PM2.5 changes from pre-
lockdown to lockdown (Figure 2(c)) and found completely

opposite PM2.5 changes, i.e., expected PM2.5 decreases over
southern NCP and unexpected PM2.5 increases over northern
NCP.
The inverse PM2.5 changes as a result of nationwide emission

reduction went beyond our understanding. We further focused
our attention on the two regions with the largest PM2.5
decreases (pink box in Figure 2(c)) and increases (green
box in Figure 2(c)). Simulated PM2.5 changes from pre-
lockdown to lockdown were −61.0 μg m−3 and +10.0 μg m−3

averaged over the two regions. We applied the improved IPR
to the two regions to identify the leading process responsible
for the respective PM2.5 changes.
Key Processes Driving Opposite PM2.5 Changes. Over

southern NCP, the PM2.5 concentration was decreased by 61.0
μg m−3 from pre-lockdown to lockdown (Figure 3(a1)).
Compared with pre-lockdown, the lockdown period suffered
from a higher initial concentration (C0) and weaker physical
dilution including advection (ADVE), vertical mixing (VMIX),
and wet scavenging (WETP), which caused PM2.5 increases of
70.0 μg m−3 (Figure 3(b1)), 269.5 μg m−3 (Figure 3(d1)),
704.5 μg m−3 (Figure 3(e1)), and 19.2 μg m−3 (Figure 3(f1)),
respectively. The improved PM2.5 air quality was driven by
weakened aerosol chemical production (AERC in Figure
3(g1)), followed by reduced primary emission (EMIS in
Figure 3(c1)) and weakened cloud chemical production
(CLDC in Figure 3(h1)). The contributions of subgrid
convection (SGCV) and gas-phase chemistry (GASC)
processes were not shown due to their negligible impacts.
AERC, EMIS, and CLDC processes contributed −669.8 μg
m−3, −452.5 μg m−3, and −1.9 μg m−3, respectively, to PM2.5
decreases. Therefore, the weakened aerosol chemical produc-
tion process, which mainly resulted from emission mitigation
of aerosol precursors (e.g., SO2 and NOx, Figure S1), was
identified to be the primary process responsible for the PM2.5
decrease over southern NCP, as expected.
We paid more attention to the northern NCP which suffered

from an unexpected PM2.5 increase. From pre-lockdown to
lockdown, the PM2.5 concentration was increased by 10.0 μg
m−3 (Figure 3(a2)). Lower initial concentration (C0), reduced
primary emission (EMIS), enhanced wet scavenging (WETP),
weakened aerosol chemical production (AERC), and weak-

Figure 4. (a) Anthropogenic NOx emissions, (b) chemical conversion rates of gas-phase reactions of OH with NO2 and N2O5 to generate HNO3,
(c) chemical conversion rates of heterogeneous reaction of N2O5 on particle surface to generate nitrate, and (d) nitrate concentrations contributed
by AERC process (AERC-nitrate), averaged over the northern North China Plain during pre-lockdown and lockdown periods. Respective
percentage changes from pre-lockdown to lockdown are also shown in each panel. The HNO3 formed by gas-phase reactions of OH with NO2 and
N2O5 are further converted to particulate nitrate, which is included in the AERC process.
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ened cloud chemical production (CLDC) resulted in PM2.5
decreases by 29.7 μg m−3 (Figure 3(b2)), 203.2 μg m−3

(Figure 3(c2)), 0.8 μg m−3 (Figure 3(f2)), 21.3 μg m−3

(Figure 3(g2)), and 5.0 μg m−3 (Figure 3(h2)), respectively.
On the contrary, weakened advection (ADVE) dilution,
followed by weakened vertical mixing (VMIX) dilution,
brought about PM2.5 increases. ADVE and VMIX led to
PM2.5 increases of 256.9 μg m−3 (Figure 3(d2)) and 13.1 μg
m−3 (Figure 3(e2)), respectively. As shown in Figure S11, the
lower wind speed over the northern NCP was unbeneficial to
transport and dilute aerosol particles, leading to local
accumulation of PM2.5. Meanwhile, according to simulation
results of meteorology-driven process contribution changes
(sensitivity experiments with fixed anthropogenic emissions
but meteorology conditions change from the pre-lockdown
level to lockdown level, Table S5), weakened ADVE was also
diagnosed as the dominant factor for the increased PM2.5 over
the northern NCP during the lockdown period (Figure S12).
Therefore, the PM2.5 increase over the northern NCP during
lockdown was primarily attributed to a weakened advection
process induced by decreased wind speed.
We also noticed the significant discrepancy of PM2.5 changes

induced by the AERC process between the southern versus
northern NCP. Benefiting from emission reduction of
precursors, the PM2.5 concentration contributed by the
AERC process (AERC-PM2.5 for short) decreased significantly
(−669.8 μg m−3) over the southern NCP from pre-lockdown
to lockdown. However, a much smaller decrease (−21.3 μg
m−3) in the AERC-PM2.5 concentration was found over the
northern NCP; AERC-sulfate only decreased by 12.3 μg m−3

(11.8%), and AERC-nitrate even increased by 5.4 μg m−3

(4.1%). Here we took AERC-nitrate, which exhibited an
unexpected increase in response to NOx emission reduction,
for further analysis. As shown in Figure 4, although NOx
emission was also largely reduced (by 30.6%) over the
northern NCP from pre-lockdown to lockdown, the con-
version rates of gas-phase reactions of OH with NO2 and N2O5
to generate HNO3 increased by 21.2%, and the heterogeneous
reaction of N2O5 on the particle surface to generate nitrate
increased by 370.5%. It was noted that HNO3 formed by gas-
phase reactions of OH with NO2 and N2O5 were further
converted to particulate nitrate, which was also included in the
AERC process. The impact of elevated chemical conversion
rates offset that of reduced NOx emissions, eventually resulting
in an unexpected increase in nitrate concentration (by 4.1%).
Compared with pre-lockdown, the lockdown period experi-
enced a higher daytime temperature (+2.7 K), higher
nighttime relative humidity (+2.2%), and higher daily HOx
(OH + HO2) concentration (+0.3 ppt) over the northern
NCP, all of which were beneficial to promote chemical
conversion efficiency and chemical formation of nitrate.
Limitation and Implication. It is noted that the formation

of secondary organic aerosol (SOA) is not included in WRF-
Chem with the CBMZ/MOSAIC scheme because CBMZ is
hard-wired with a numerical solver and SOA condensable
precursors cannot be directly added into it.16,27,28 The lack of
SOA simulation can lead to an underestimation of PM2.5 and
may cause uncertainty associated with the role of chemistry.
However, PM2.5 composition measurements over northern
NCP showed that the ratio of organic in PM2.5 decreased a lot,
while the ratio of SIA (secondary inorganic aerosol, SIA =
SO4

2− + NO3
− + NH4

+) increased a lot from before to during the
COVID-19 lockdown period,29,36 indicating the greater

impacts of SIA. Therefore, the uncertainty brought by SOA
will not overturn the conclusion of present study. The impacts
of the SOA will be discussed in our future study. Implication of
the IPR method analyzed in this study is far beyond
application to the COVID-19 air quality study. The improved
method can be applied to any two periods and quantifies
process contributions to changes in pollutant concentrations
between the two periods. Since 2013, strict pollution control
measures have been implemented to improve China’s air
quality. From 2013 to 2020, national PM2.5 concentration has
decreased by 48%, while ozone increased by 17%.30 Although
previous studies have examined the impacts of anthropogenic
emissions and meteorological conditions on PM2.5 decreases or
ozone increases,31−34 applying improved IPR analysis to year
2013 and year 2020 provides a novel process-level
quantification perspective to explain pollutant changes.

■ ASSOCIATED CONTENT
Data Availability Statement
Meteorological measurements can be obtained from Wyoming
Weather Web (http://weather .uwyo.edu/surface/
meteorogram/seasia.shtml). Observed PM2.5, O3, and NO2
concentrations can be accessed publicly from China National
Environmental Monitoring Centre (https://quotsoft.net/air/).
*sı Supporting Information
The Supporting Information is available free of charge at
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